Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (11): 102-106    
综述     
拟南芥miR399耐低磷胁迫研究进展
孙佃臣1,2, 沙爱华1, 单志慧1, 周蓉1, 周新安1
1. 中国农业科学院油料作物研究所 农业部油料作物生物学重点开放实验室 武汉 430062;
2. 中国农业科学院研究生院 北京 100081
Advances of miR399 in Resistance of Low-phosphate Stress in Arabidopsis Thaliana
SUN Dian-chen1,2, SHA Ai-hua1, SHAN Zhi-hui1, ZHOU Rong1, ZHOU Xin-an1
1. Institute of Oil Crops Research,Chinese Academy of Agriculture Sciences,Wuhan 430062,China;
2. Graduate School of Chinese Academy of Agricultural Sciences,Beijing 100081,China
 全文: PDF(386 KB)   HTML
摘要:

MicroRNA是一类长21~25nt的内源非编码RNA,可以与目标mRNA结合使之断裂或降解,从而在转录或转录后水平发挥作用。miR399长22nt,在拟南芥中有6个成员,分别是miR399a~f,已在19个物种中发现了118个miR399。现已证明,拟南芥miR399在耐低磷胁迫中有重要作用,现对拟南芥miR399在耐低磷胁迫中的研究进展进行综述,以探索miR399提高大豆及其他植物耐低磷胁迫能力的可能性。

关键词: 拟南芥miR399低磷胁迫    
Abstract:

MicroRNAs are a kind of non-coding RNA,about 21~25nt. These small RNAs induce transcriptional or posttranscriptional gene silencing by guiding heterochromatin formation, mRNA degradation, or translational inhibition. MiR399 have six members in Arabidopsis thaliana, including mi399a~f. And 118 microRNAs have been identified in 19 species. What has been proved is that miR399 can play an important role in low-phosphate limitation. Recent advances in miR399, exploring the probability to conquer low-phosphate stress of soybean and other plants be reviewed.

Key words: Arabidopsis thaliana miR399    Low-phosphate stress
收稿日期: 2011-05-20 出版日期: 2011-11-25
ZTFLH:  Q52  
基金资助:

国家转基因生物新品种培育科技重大专项(2008ZX08004-005)、农业部作物种质资源保护项目[(NB07-2130315-06,NB08-2130315-(25-31)-06)]资助项目

通讯作者: 周新安     E-mail: xazhou@public.wh.hb.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孙佃臣, 沙爱华, 单志慧, 周蓉, 周新安. 拟南芥miR399耐低磷胁迫研究进展[J]. 中国生物工程杂志, 2011, 31(11): 102-106.

SUN Dian-chen, SHA Ai-hua, SHAN Zhi-hui, ZHOU Rong, ZHOU Xin-an. Advances of miR399 in Resistance of Low-phosphate Stress in Arabidopsis Thaliana. China Biotechnology, 2011, 31(11): 102-106.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I11/102


[1] Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press,Lindon, UK:1995.

[2] Roghothama K G, Karthikeyan A S. Phosphate acqiucition. Plant and Soil,2005, 274: 37-49.

[3] Raghothama K G. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 665-693.

[4] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993,75, 843-854.

[5] Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell, 2004,16:2001-2019.

[6] Fujii H,Chiou T J,Lin S I. A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology, 2005,Vol.15,2038-2043.

[7] Aung K, Lin S I, Wu C C, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis. The Plant Cell, 2006,18:412-421.

[8] Aung K, Lin S I, Wu C C, et al. pho2 , a phosphate over accumulator, is caused by a nonsense mutation in a miR399 target gene. Plant Physiology,2006,141:1000-1011.

[9] Sunkar R, Chinnusamy V, Zhu J K. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 2007,12:301-309.

[10] Lin S I, Chiang S F, Chen J W et al. Regulatory network of miR399 and PHO2 by systemic signaling. Plant Physiology, 2008,147:732-746.

[11] Bachmair A, Novatchkova M, Potuschak T, et al. Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends in Plant Science, 2001,6:463-470.

[12] Kraft E, Stone S L, Ma L, Su N, et al. Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiology, 2005,139:1597-1611.

[13] Allen E, Xie Z, Gustafson A M, et al. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121: 207-221.

[14] Chiou T J. The role of microRNAs in sensing nutrient stress. Plant, cell and Environment,2007,30:323-332.

[15] Lin S I, Chiou T J. Long-distance movement and differential targeting of miR399s.Plant Signaling&Behavior,2001,3:793-732.

[16] Bari R, Pant B D,Stitt M. PHO2 , MiR399, and PHR1 Define a Phosphate-Signaling Pathway in Plants. Plant Physiology,2006,141:988-999.

[17] Wu P, Ma L, Hou X, et al. Phosphate starvation triggers distinct alteration of genome,expression in Arabidopsis roots and leaves. Plant Physiology, 2003,132:1260-1271.

[18] Schachtman D P,Shin R. Nutrient Sensing and Signaling: NPKS. Annu Rev Plant Biol, 2007, 58:47-69.

[19] Valli A,Todesco M,Mateos I,et al.Target mimicry provides a new mechanism for regulation of microRNA activity.Nature Genetics, 2007,39:1033-1037.

[20] Burleigh S H, Harrison M J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol Biol, 1997,34:199-208.

[21] Burleigh S H, Harrison M J. The down regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol, 1999,119:241-248.

[22] Liu C, Muchhal U S, Raghothama K G. Differential expression of TPSI1 , a phosphate starvation-induced gene in tomato. Plant Mol. Biol, 1997,33:867-874.

[23] Martin A C, Iglesia J, Rubio V, et al. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J, 2000,24: 559-567.

[24] Shin H, Shin H S, Chen R, et al. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J, 2006,45: 712-726.

[25] MacIntosh G C, Wilkerson C, Green P J. Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiology, 2001, 127: 765-776.

[26] Martin A C, del Pozo J C, Iglesias J, et al. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal, 2000, 24: 559-567.

[27] Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 2005, 8: 517-527.

[28] Pant B D, Buhtz A, Kehr J. MiR399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant Journal, 2008,53:731-738.

[29] Chen D L, Delatorre C A, Bakker A, et al.Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana. Planta, 2000,211: 13-22.

[30] Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev, 2001,15: 2122-2133.

[31] Zakhleniuk O V, Raines C A, Lloyd J C. pho3: a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh. Planta, 2001,212: 529-534.

[32] Ticconi C A, Delatorre C A, Lahner B, et al. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development.Plant J, 2004,37: 801-814.

[33] Lloyd J C, Zakhleniuk O V. Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J Exp Bot, 2004,55: 1221-1230.

[34] Poirier Y, Thoma S, Somerville C, et al. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol,1991, 97:1087-1093.

[35] Delhaize E, Randall P J.Characterization of a phosphate accumulator mutant of Arabidopsis thaliana. Plant Physiol,1995, 107: 207-213.

[36] Trull M C, Deikman J. An Arabidopsis mutant missing one acid phosphatase isoform. Planta,1998, 206: 544-550.

[37] Poirier Y, Bucher M. Phosphate transport and homeostasis in Arabidopsis. Rockville: 2002, doi/10.1199/tab.0024.

[38] Hamburger D, Rezzonico E, MacDonald-Comber Pete'tot J, et al.Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell, 2002,14: 889-902.

[39] Wang Y, Ribot C, Rezzonico E, et al.Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol, 2004,135: 400-411.

[40] Dong B, Rengel Z, Delhaize E. Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Plant Physiology,1998,205: 251-256.

[1] 邱家俊, 颜景斌. 基因印记与lncRNA[J]. 中国生物工程杂志, 2014, 34(7): 63-68.
[2] 王琰, 喻婵, 王阶平, 邱宁, 何进, 孙明, 张青叶. 蜡状芽孢杆菌群中规律成簇间隔短回文重复序列的生物信息学分析[J]. 中国生物工程杂志, 2011, 31(7): 72-78.
[3] 李媛, 任长虹, 吴永红, 叶巧, 石锦平, 屈武斌, 郑晓飞, 刘虎岐, 张成岗. 多重PCR在质粒拷贝数检测中的应用[J]. 中国生物工程杂志, 2011, 31(06): 93-98.
[4] 高闪电,常惠芸,丛国正,独军政,邵军军,林彤. NASBA(依赖核酸序列的扩增)及其在病毒检测中的应用[J]. 中国生物工程杂志, 2009, 29(01): 80-85.