Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (06): 29-37    
研究报告     
杨树CYCD基因的功能鉴定及其对糖和植物激素的响应
郝爽, 夏新莉, 尹伟伦
北京林业大学生物科学与技术学院 北京 100083
D-Type Cyclin Family in Populus: Functional Characterization and Expression Profiling under Phytohormones and Sucrose Treatment
HAO Shuang, XIA Xin-li, YIN Wei-lun
College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
 全文: PDF(649 KB)   HTML
摘要:

G1到S期的转换是植物细胞周期中一个关键的调控点,而D型细胞周期蛋白(CYCD)在这一转换过程中起着重要作用。CYCD通过感受外界信号的刺激,调控细胞周期进程,进而影响植物的生长发育。为研究木本植物中不同CYCD基因家族的功能,从黑杨中克隆出6个CYCD基因,并将其转化至酵母G1期细胞周期蛋白突变体进行功能鉴定。各家族CYCD基因均能对酵母突变体进行回补,但回补后促进酵母生长的能力存在差异。通过对黑杨组培苗进行糖和植物激素处理,观察到黑杨根部形态发生改变,同时用实时荧光定量PCR技术检测了该处理条件下CYCD基因表达量的变化。结果表明,各CYCD基因家族的代表成员对糖和植物激素的响应不同,反映了不同黑杨CYCD基因在树木生长发育过程中所起作用的差异性。

关键词: CYCD功能鉴定植物激素杨树    
Abstract:

The G1/S transition is one of the key regulatory points during the plant cell cycle. D-type cyclins (CYCDs) play critical roles in controlling the progression through the G1 into the S phase. Since CYCDs are responsive to stimulatory signals, they are functional in integrating mitogenic signals into cell division. However, the expression patterns and functional characteristics of different CYCD families in woody species remain to be elucidated. Six putative CYCD genes designated as PdCYCD1-7 from a hybrid poplar clone (P.deltoides × P.nigra, NE19) by complementing a yeast mutant lacking G1 cyclins were identified. But their effects on promoting yeast cell division after ectopic expression are divergent. Sucrose and phytohormone treatments on in vitro-grown poplar seedlings led to the alteration of morphological traits in roots. The effects on the transcript levels of PdCYCDs were monitored. Differential expression characteristics of the CYCDs in response to the mitogen supply were observed. Though CYCDs were induced by sucrose, their extents of induction among CYCD subgroups varied. PdCYCD6;4 and PdCYCD3;1 may have wider roles in responding to external signals than others, for they were modulated with sucrose and most hormones treatments. The induction of PdCYCD2;1 and PdCYCD1;1 by hormones depended on the presence of sucrose. PdCYCD5;1 was greatly stimulated by ethylene and the strengthening effect on induction was observed when sugar and hormones were added together. PdCYCD7;1 was not so sensitive to sucrose but was upregulated by gibberellin and ethylene. Together, these results suggest that the six populus CYCD genes identified here are functional in rescuing yeast cyclin mutant but may still have group-specific functions during the development of plants.

Key words: CYCD Functional characterization    Sugar    Phytohormone    Poplar
收稿日期: 2011-03-03 出版日期: 2011-06-28
ZTFLH:  Q819  
基金资助:

国家"973"计划(2009CB1191017)、国家自然科学基金(30730077、30972339、31070597)、国家新世纪杰出人才计划(NCET-07-0083)、国家高技术研发计划(2007AA10Z106)资助项目

通讯作者: 郝爽, 尹伟伦     E-mail: shuangshuangxixi@gmail.com; yinwl@bjfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郝爽
夏新莉
尹伟伦

引用本文:

郝爽, 夏新莉, 尹伟伦. 杨树CYCD基因的功能鉴定及其对糖和植物激素的响应[J]. 中国生物工程杂志, 2011, 31(06): 29-37.

HAO Shuang, XIA Xin-li, YIN Wei-lun. D-Type Cyclin Family in Populus: Functional Characterization and Expression Profiling under Phytohormones and Sucrose Treatment. China Biotechnology, 2011, 31(06): 29-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I06/29

[1] den Boer B G, Murray J A. Control of plant growth and development through manipulation of cell-cyclin genes. Curr Opin Biotechnol, 2000, 11 (2): 138-145.

[2] Oakenfull E A, Riou-Khamlichi C, Murray J A. Plant D-type cyclins and the control of G1 progression Philos. Trans R Soc Lond B Biol Sci, 2002, 357: 749-760.

[3] Dewitte W, Murray J A H. The plant cell cycle. Annu Rev Plant Biol,2003, 54: 235-264.

[4] Soni R, Carmichael J P, Shah Z H, et al. A family of cyclin D homologues from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell,1995, 7: 85-103.

[5] [JP3]Wang G, Kong H, Sun Y, et al. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol,2004, 135:1084-1099.

[6] Menges M, Pavesi G, Morandini P, et al. Genomic organization and evolutionary conservation of plant D-type cyclins. Plant Physiol, 2007, 145(4):1558-1576.

[7] Vandepoele K, Raes J, de Veylder L, et al. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell, 2002, 14: 903-916.

[8] Riou-Khamlichi C, Menges M, Healy J M S, et al. Sugar control of the plant cell cycle: differential regulation of Arabidopis D-type cyclin gene expression. Mol Cell Biol, 2000, 20: 4513-4521.

[9] Riou-Khamlichi C, Huntley R, Jacqmard A, et al. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science, 1999, 283: 1541-1544.

[10] Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CYCD3-induction pathway in Arabidopsis. The Plant Journal, 2000, 24: 693-701.

[11] Menges M, Murray J A H. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J, 2002, 30: 203-212.

[12] Dewitte W, Riou-Khamlichi C, Scofield S, et al. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell, 2003, 15: 79-92.

[13] Schnittger A, Schobinger U, Bouyer D, et al. Ectopic D-type cyclin expression induces not only DNA replication but also cell division in Arabidopsis trichomes. Proc Natl Acad Sci USA, 2002, 99: 6410-6415.

[14] Dewitte W, Scofield S, Alcasabas A A, et al. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci USA, 2007, 104: 14537-14542.

[15] Cockcroft C E, den Boer B G, Healy J M S, et al. Cyclin D control of growth rate in plants. Nature, 2000, 405: 575-579.

[16] [JP3]Qi R, John P C Expression of genomic AtCYCD2;1 in Arabidopsis induces cell division at smaller cell sizes: implications for the control of plant growth. Plant Physiol, 2007, 144: 1587-1597.[JP]

[17] Koroleva O A, Tomlinson M, Parinyapong P, et al. CYCD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell, 2004, 16: 2364-2379.

[18] Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11: 113-116.

[19] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods, 2001, 25: 402-408.

[20] Kono A, Ohno R, Umeda-Hara C, et al. A distinct type of cyclin D, CYCD4;2, involved in the activation of cell division in Arabidopsis. Plant Cell Rep, 2006, 25(6):540-545.

[21] Meijer M, Murray J A H. The role and regulation of D-type cyclins in the plant cell cycle. Plant Mol Biol, 2000, 43(5-6):621-633.

[22] Ramirez-Carvajal G A, Davis J M. Cutting to the base: Identifying regulators of adventitious rooting. Plant Signal Behav, 2010, 5(3):281-283

[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[3] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[4] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[5] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[6] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[7] 陈玉琼,谭文华,刘海峰,陈根. miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*[J]. 中国生物工程杂志, 2021, 41(5): 8-16.
[8] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[9] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[10] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[11] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[12] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[13] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[14] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[15] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.