
微生物发酵法生产L-色氨酸的代谢工程研究
Metabolic Engineering of L-tryptophan via Microbiological Fermentation
L-色氨酸作为人体内的一种必需氨基酸,广泛应用于医药、食品与饲料等行业。工业上采用的色氨酸生产方法有化学合成法、转化法及微生物发酵法。近年来,随着代谢工程在色氨酸菌种选育中的成功运用,微生物发酵法逐渐成为主要的色氨酸生产方法。系统综述了微生物发酵法生产色氨酸所涉及的代谢工程策略,包括生物合成色氨酸的代谢调控机制以及途径改造的措施和效果,此外,还探讨了L-色氨酸未来的发展前景。
L-tryptophan (L-Trp) is widely used in food, animal feed and pharmaceutical industries as an essential amino acid for humans. Chemical synthesis, enzymatic/microbial conversion and microbial fermentation are the methods for industrial production of L-Trp. Recently, with successful application of metabolic engineering in strain improvement, microbial fermentation gradually becomes the major method of L-Trp production. The strategy of metabolic engineering for improving L-Trp production is reviewed, involving the regulatory mechanism and genetic modification of L-Trp biosynthesis. Furthermore, the prospect of L-Trp production is also discussed.
L-色氨酸 / 代谢工程 / 微生物发酵法 {{custom_keyword}} /
L-tryptophan / Metabolic engineering / Microbial fermentation {{custom_keyword}} /
[1] Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Applied Microbiology and Biotechnology, 2005, 69(1): 1-8.
[2] Snyder H, MacDonald J. A synthesis of tryptophan and tryptophan analogs1. Journal of the American Chemical Society, 1955, 77(5): 1257-1259.
[3] 韦和平, 吴梧桐. 以L-半胱氨酸和吲哚酶法合成L-色氨酸. 药用生物技术, 2000, 7(4): 197-199. Wei H P, Wu W T. Pharmaceutical Biotechnology, 2000, 7(4):197-199.
[4] 张素珍, 刘英昊. 用北京鼓棒杆菌细胞转化生产L-色氨酸. 微生物学报, 1993, 33(1): 69-73. Zhang S Z, Liu Y H. Acta Microbiologica Sinica, 1993, 33(1): 69-73.
[5] Azuma S, Tsunekawa H, Okabe M, et al. Hyper-production of L-trytophan via fermentation with crystallization. Applied Microbiology and Biotechnology, 1993, 39(4): 471-476.
[6] Ikeda M, Katsumata R. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Applied and Environmental Microbiology, 1999, 65(6): 2497.
[7] Dodge T, Gerstner J. Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E. coli. Journal of Chemical Technology & Biotechnology, 2002, 77(11): 1238-1245.
[8] Dehghan Shasaltaneh M, Fooladi J, Moosavi-Nejad S Z. L-tryptophan production by Escherichia coli in the presence of Iranian cane molasses. Journal of Paramedical Sciences, 2010, 1(2): 20-25.
[9] Bongaerts J, Kramer M, Muller U, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metabolic Engineering, 2001, 3(4): 289-300.
[10] Ikeda M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology, 2006, 69(6): 615-626.
[11] Sugimoto S, Shiio I. Enzymes of the tryptophan synthetic pathway in Brevibacterium flavun. Journal of Biochemistry, 1977, 81(4): 823.
[12] Yanofsky C, Horn V, Gollnick P. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. Journal of Bacteriology, 1991, 173(19): 6009.
[13] Wehrmann A, Morakkabati S, Krmer R, et al. Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter. Journal of Bacteriology, 1995, 177(20): 5991.
[14] Katsumata R, Ikeda M. Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Nature Biotechnology, 1993, 11(8): 921-925.
[15] Jossek R, Bongaerts J, Sprenger G. Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiology Letters, 2001, 202(1): 145-148.
[16] Kikuchi Y, Tsujimoto K, Kurahashi O. Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Applied and Environmental Microbiology, 1997, 63(2): 761.
[17] Caligiuri M, Bauerle R. Subunit communication in the anthranilate synthase complex from Salmonella typhimurium. Science, 1991, 252(5014): 1845.
[18] 李剑欣. 大肠杆菌色氨酸生物合成分支途径调控研究. 北京: 军事医学院科学院, 放射医学研究所, 2007. Li J X. Study on the Regulation of Branch Metabolic Pathway in Tryptophan Biosynthesis of Escherichia coli. Beijing: Academy of Military Medical Science, Institute of Radiation Medicine, 2007.
[19] Hagino H, Nakayama K. Regulatory properties of anthranilate synthetase from Corynebacterium glutamicum. Agricultural and Biological Chemistry, 1975, 39(2): 323-330.
[20] Ikeda M, Nakanishi K, Kino K, et al. Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Bioscience, Biotechnology, and Biochemistry, 1994, 58(4): 674.
[21] 陈俊峰, 苏丽娜, 王璋, 等. 从土壤中分离 L-色氨酸生产菌株及其高产诱变选育的研究. 食品与发酵工业, 2007, 33(7): 37-41. Chen J F, Su L N, Wang Z, et al. Food and Fermentation Industries, 2007, 33(7): 37-41.
[22] Sabnis N, Yang H, Romeo T. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. Journal of Biological Chemistry, 1995, 270(49): 29096.
[23] Floras N, Xiao J, Berry A, et al. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nature Biotechnology, 1996, 14(5): 620-623.
[24] Gosset G, Yong-Xiao J, Berry A. A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 1996, 17(1): 47-52.
[25] Liao J, CHAO Y, Patnaik R. Alteration of the biochemical valves in the central metabolism of Escherichia coli. Annals of the New York Academy of Sciences, 1994, 745(1): 21-34.
[26] Patnaik R, Liao J. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Applied and Environmental Microbiology, 1994, 60(11): 3903.
[27] 王静, 于金龙, 张婷, 等. 大肠杆菌生物合成中心代谢途径的改造及其对工程菌色氨酸产量的影响. 中国医药生物技术, 2008, 3(2): 93-97. Wang J, Yu J L, Zhang T, et al. Chinese Medicinal Biotechnology, 2008, 3(2): 93-97.
[28] Doroshenko V, Airich L, Vitushkina M, et al. YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiology Letters, 2007. 275(2): 312-318.
[29] Ikeda M, Katsumata R. Tryptophan production by transport mutants of Corynebacterium glutamicum. Bioscience, Biotechnology, and Biochemistry, 1995, 59(8): 1600-1602.
[30] Li K, Mikola M, Draths K, et al. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Biotechnol Bioeng, 1999, 64(1): 61-73.
[31] Martínez K, De Anda R, Hernández G, et al. Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact, 2008, 7(1): 1.
[32] Chandran S S, Yi J, Draths K M, et al. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog, 2003, 19(3): 808-814.
[33] Ahn Jo, Lee H, Saha R, et al. Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions. Journal of Microbiology and Biotechnology, 2008, 18(11): 1773.
[34] Escalante A, Calderón R, Valdivia A, et al. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact, 2010, 9: 21.
[35] Balderas-Hernandez V E, Sabido-Ramos A, Silva P, et al. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact, 2009, 8: 19.
[36] Lee K H, Park J H, Kim T Y, et al. Systems metabolic engineering of Escherichia coli for L-threonine production. Molecular Systems Biology, 2007, 3:149.
[37] Park J, Lee K, Kim T, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the National Academy of Sciences, 2007, 104(19): 7797.
国家"863"计划 (2009AA02Z204)、国家杰出青年基金(20625619)资助项目
/
〈 |
|
〉 |