Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (06): 97-100    
技术与方法     
人精氨酸酶在毕赤酵母的高效表达、纯化和活性研究
马晓莉2|梁果义1
1. 北京双鹭药业股份有限公司2. 空军总医院
Study on expression in Pichia pastoris, purification and activity of human arginase
 全文: PDF(467 KB)   HTML
摘要: 目的:人精氨酸酶(Arginase, Arg)的基因arg在毕赤酵母高效分泌表达,建立相应纯化工艺路线,研究重组人精氨酸酶的活性。方法:将人精氨酸酶基因arg按正确的阅读框架插入到毕赤酵母表达载体pPIC9α信号肽基因后,构建得到重组毕赤酵母表达质粒。转化毕赤酵母GS115筛选高表达菌株。结果:成功构建了酵母表达载体pPIC-Arg,转化毕赤酵母GS115后筛选到分泌表达目的蛋白Arg的菌株,目标蛋白可以分泌到培养基中。经过膜过滤和凝胶过滤层析对培养基上清进行纯化,即可获得纯度达到95%的活性产物。活性测定表明,纯化的Arg比活性为310 IU/mg。结论:成功构建了Arg的毕赤酵母高效表达菌种,建立了目标物质的分离纯化工艺。
关键词: 精氨酸酶;毕赤酵母;表达;纯化;活性    
Abstract:

Objective To develop an effectually secrete expression in Pichia pastoris and purification system of recombinant human Arginase(Arg), and to test the activity of recombinant Arg. Methods Human arginase gene in the correct reading frame inserted into Pichia expression vector (pPIC9) after signal peptide, recombinant Pichia expression plasmid pPIC-Arg was transformed it into the host strain GS115. Results An recombinant expression plasmid pPIC-Arg was generated successfully, and was identified by DNA sequencing; The recombinant protein was expressed in GS115 with high level, the recombinant arginase gene was expressed highly and secrete effectually in Pichia pastoris, and the expressed product had the normal bioactivity. The target protein can be released into the media, the expression of protein in the supernatants accounted for more than 80%. AfterUltrafiltration and gel filtration, the purity of recombinant Arg reached 95%, and the specific activity is about 310 IU/mg. Conclusions A set of protocols for high efficient the Pichia expression and purification has been established, which is simple, efficient and applicable.

Key words: Arginase;Pichia pastoris;Expression;Purification;Activity
收稿日期: 2008-12-15 出版日期: 2009-07-02
ZTFLH:  Q819  
通讯作者: 梁果义     E-mail: guoyi_liang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马晓莉2
梁果义1

引用本文:

马晓莉2,梁果义1. 人精氨酸酶在毕赤酵母的高效表达、纯化和活性研究[J]. 中国生物工程杂志, 2009, 29(06): 97-100.

MA Xiao-Chi-2, LIANG Guan-Xi-1. Study on expression in Pichia pastoris, purification and activity of human arginase. China Biotechnology, 2009, 29(06): 97-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I06/97

[1] Ensor C M, Holtsberg F W, Bomalaski J S, et al. Pegylated arginine deiminase (ADISS PEG20000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res, 2002,62(19):5443~5450 [2] Feun L, Savaraj N. Pegylated arginine deiminase: a novel anticancer enzyme agent. Expert Opin Investig Drugs, 2006,15(7):815~822 [3] Yoon C Y, Shim Y J, Kim E H, et al. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer, 2007,120(4):897~905 [4] Cheng P N, Lam T L, Lam W M,et al. Pegylated recombinant human arginase (rhArgpeg5000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res, 2007,67(1):309~317 [5] Storr J M, Button A F. Effects of arginine deficiency on lymphoma cells. Br J Cancer,1974,30: 50~59 [6] Wheatley D N, Scott L, Lamb J,et al. Single amino acid (Arg) restriction: growth and death of cultured HeLa and human diploid fibroblasts. Cell Physiol Biochem, 2000,10:37~55 [7] Ikemoto M, Tabata M, Miyake M, et al.Expression of human liver arginase in Escherichia coli. Purification and properties of the product.Biochem J, 1990,270(3): 697~703
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.