Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (06): 85-90    
技术与方法     
高产吩嗪-1-羧酸(PCA)假单胞菌株M18G发酵优化模型的构建
李雅乾|蒋海霞|张雪洪|许煜泉
上海交通大学生命科学与技术学院
Optimal Model Design for High Production of Phenazine-1-Caboxylic Acid (PCA)
 全文: PDF(628 KB)   HTML
摘要: 吩嗪-1-羧酸(phenazine-1-carboxylic acid, PCA)是促进根际生长假单胞菌分泌的重要抗菌物质。采用Plackett-Burman(PB)设计和响应面法(response surface method, RSM)对假单胞菌株M18(Pseudomonas sp. M18)的gacA基因突变株M18G的次级代谢产物PCA发酵的营养条件进行建模。运用Plackett-Burman(PB)设计试验,从12个营养成分中筛选出4个关键的组分,进而采用RSM 法对这4个因素进行中心组合设计试验,建立回归方程并进行统计学分析,绘制各营养因子之间的关系图。实验结果表明:建立的模型能合理地模拟并优化发酵中各参数及其浓度,确定发酵培养基的成分和浓度为:黄豆粉33.4g/L,葡萄糖12.7g/L,大豆蛋白胨10.9g/L和乙醇13.8 g/L, M18G菌株经60 h发酵培养,最高PCA产率能达到1.89 g/L,比优化前提高了6倍左右。各营养因子的等值线图表明黄豆粉和乙醇在PCA高产发酵中起到更为关键的作用,因此提供了提高PCA发酵产量的有效方法,并为其未来商业化应用奠定了基础。
关键词: 吩嗪-1-羧酸M18G响应面方法;发酵模型    
Abstract:

Model on secondary metabolite phenazine-1-carboxylic acid (PCA) fermentation nutrition conditions of gacA inactivate mutant Pseudomonas sp. M18G was constructed by Plackett-Burman design (PB) and Response Surface Method (RSM). In PB design four key components selected from 12 different factors have shown to play an important role for promoting PCA production. Center Composite Design (CCD) was adopted to establish a fermentation model for the four nutrition components using RSM. The optimal concentration of the four components based on analysis of regression equation were determined that soybean meal 33.4g/L , glucose 12.7g/L, soy peptone10.9g/L, ethanol13.8g/L, and the highest PCA production could reached 1.89g/L after 60h fermentation and the yield increased to 6 fold over that before optimization. The contour graphs depicted interactions of the two nutrition components showed that soybean meal and ethanol played an even more crucial role for the highest production of PCA in fermentation.

Key words: Phenazine-1-carboxylic acid    M18G    Response Surface Method    Fermentation model
收稿日期: 2009-03-04 出版日期: 2009-07-02
基金资助:

国家973重大基础研究项目的支持

通讯作者: 许煜泉     E-mail: xuyq@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李雅乾
蒋海霞
张雪洪
许煜泉

引用本文:

李雅乾,蒋海霞,张雪洪,许煜泉. 高产吩嗪-1-羧酸(PCA)假单胞菌株M18G发酵优化模型的构建[J]. 中国生物工程杂志, 2009, 29(06): 85-90.

LI Ya-Gan, JIANG Hai-Xia, ZHANG Xue-Hong, HU Yu-Quan. Optimal Model Design for High Production of Phenazine-1-Caboxylic Acid (PCA). China Biotechnology, 2009, 29(06): 85-90.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I06/85

[1] Mavrodi D V, Blankenfeldt W ,Thomashow L S. Phenazine compounds in fluorescent pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol, 2006, 44 (5): 417~445 [2] Laursen J B, Nielsen J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev, 2004, 104 (3):1663~1685 [3] Lau G W, Hassett D J, Ran H, et al. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med, 2004, 10 (12): 599~606 [4] Mavrodi D V, Bonsall R F, Delaney S M, et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol, 2001, 183 (21): 6454~6465 [5] Hu H B, Yu Q X, Feng C, et al. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin. J Microbiol Biotechn, 2005, 15 (1): 86~90 [6] 许煜泉. 绿色微生物源杀菌剂申嗪霉素(M18). 精细和专用品化学, 2004, 20(12): 8~10 Xu Y Q.Fine and Specialty Chemicals, 2004, 20 (12): 8~10 [7] Ge Y, Huang X, Wang S, et al. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett, 2004, 237 (7): 41~47 [8] Khambhaty Y, Mody K, Jha B, et al. Statistical optimization of medium components for kappa-carrageenase production by Pseudomonas elongata. Enzyme Microb Tech, 2007, 40(4): 813~822 [9] Kennedy M, Krouse D. Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biot, 1999, 23 (6): 456~475 [10] Gheshlaghi R, Scharer J M, Moo-Young M, et al. Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng , 2 005, 90 (6): 754~760 [11] Duffy B K, Defago G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environl Microb, 1999, 65 (6): 2429~2438 [12] Raaijmakers J M, Vlami M, de Souza J T. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 2002, 81(11): 537~547 [13] Shtark O, Shaposhnikov A I, Kravchenko L V. The production of antifungal metabolites by Pseudomonas chlororaphis grown on different nutrient sources. Mikrobiologiia , 2003, 72 (5): 645~650 [14] Xiao Z J, Liu P H, Qin J Y, et al. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol , 2007, 74(1): 61~68 [15] Slininger P J, Shea-Wilbur M A. Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol, 1995, 43 (5): 794~800 [16] van Rij E T, Wesselink M, Chin-A-Woeng T F C, et al. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe In, 2004, 17(5): 557~566
No related articles found!