Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2008, Vol. 28 Issue (11): 53-57    
研究报告     
利用PDOR同工酶基因yqhD对产1,3-丙二醇克雷伯氏杆菌进行基因工程改造
诸葛斌,王勇,方慧英,毛忠贵,诸葛健
江南大学生物工程学院工业微生物研究中心
Genetic engineering reconstruction of Klebsiella pneumoniae producing 1,3-propanediol by the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme
 全文: PDF(560 KB)   HTML
摘要:

由于Klebsiella pneumoniae 1,3-丙二醇合成途径中,加强甘油脱水酶基因表达,导致因NADH供应不足使3-羟基丙醛累积,并对菌体生长及1,3-丙二醇合成造成负面影响。为改善Klebsiella pneumoniae 1,3-丙二醇合成途径,本文利用PCR技术从大肠杆菌(Escherichia coli)中扩增出以NADPH 为辅酶的1,3-丙二醇氧化还原酶同工酶编码基因yqhD,从克雷伯氏杆菌中扩增出2.66kb的甘油脱水酶基因(dhaB),构建了产1,3-丙二醇关键酶基因的串联载体pEtac-dhaB-tac-yqhD,并将其转入到野生克雷伯氏杆菌(Klebsiella pneumoniae)中,重组载体得到了表达。通过初步发酵,重组后的克雷伯氏杆菌产量比原始菌高20%左右,副产物中乙酸和丁二醇分别下降30%左右。

关键词: 13-丙二醇13-丙二醇氧化还原酶同工酶甘油脱水酶克雷伯氏杆菌    
Abstract:

In the reductive branch, glycerol is first dehydrated to 3-hydroxypropionaldehyde that is then reduced to 1,3-PD under the consumption of reducing power (NADH). If over-expression of the gene dhaB encoding glycerol dehydrase is achieved,the reducing power will be scarce and 3-hydroxypropionaldehyde will be accumulated,which is disadvantage to produce 1,3-propanediol.The structure gene yqhD from E.coli encoding 1,3-propanediol oxidoreductase isoenzyme(under the consumption of reducing power (NADPH))and the gene dhaB encoding glycerol dehydrase from Klebsiella pneumoniae was amplified using PCR method.The two gene were transferred into expression vector pEtac to construct a novel recombinant Klebsiella pneumoniae (pEtac-dhaB-tac-yqhD).Over-expression of yqhD and dhaB in Klebsiella pneumoniae was achieved with pEtac-dhaB-tac-yqhD.The fermentation result on aerobic conversion showed the increase of 20 % of 1,3-propanediol yield by Klebsiella pneumoniae(pEtac-dhaB-tac-yqhD) was obtained compared with Klebsiella pneumoniae.The main by-products,acetic acid and butanediol decreased estrogen receptors 30% obviously.

Key words: 1    3-propanediol    1    3-propanediol oxidoreductase isoenzyme    glycerol dehydratasele    Klebsiella pneumoniae
收稿日期: 2008-06-16 出版日期: 2009-04-20
基金资助:

国家“863”计划资助项目

通讯作者: 诸葛斌   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
诸葛斌
王勇
方慧英
毛忠贵
诸葛健

引用本文:

诸葛斌,王勇,方慧英,毛忠贵,诸葛健. 利用PDOR同工酶基因yqhD对产1,3-丙二醇克雷伯氏杆菌进行基因工程改造[J]. 中国生物工程杂志, 2008, 28(11): 53-57.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Y2008/V28/I11/53

[1] 朱嘉豪,陈婷,习欠云. miR-146a参与不同疾病的研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 64-70.
[2] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[3] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[4] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[5] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[6] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[7] 徐安健,李艳萌,乌姗娜,张蓓,姚静怡. PHP14通过与Vimentin相互作用影响TGF-β诱导的肝细胞AML-12上皮-间质转化*[J]. 中国生物工程杂志, 2021, 41(2/3): 1-6.
[8] 傅桂娥,李瑾,耿佩然,申梦秋,张金倩楠,赵洗尘. 医疗视角下粤港澳大湾区典型城市的新冠肺炎(COVID-19)疫情防控力量比较研究*[J]. 中国生物工程杂志, 2021, 41(12): 125-140.
[9] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[10] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[11] 郭广超,周于用,曹三杰,武耀民,伍锐,赵勤,文心田,黄小波,文翼平. 乙型脑炎病毒NS2A-C60A位点突变对其生物学特性影响研究*[J]. 中国生物工程杂志, 2020, 40(9): 1-10.
[12] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[13] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[14] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[15] 张莹,孔祥熙,侯琳,王树坤,袁增强. Ozanimod(RPC1063)在少突胶质前体细胞分化中的作用和机制 *[J]. 中国生物工程杂志, 2020, 40(6): 10-19.