Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (12): 1-13    DOI: 10.13523/j.cb.2310065
综述     
窥探纳米世界:纳米流式检测技术的研发及单颗粒水平表征应用*
蔡年桂,陈欣,张清源,底浩楠,詹小贞,陈军岩,陈昊,颜晓梅()
厦门大学化学化工学院 谱学分析与仪器教育部重点实验室 福建省化学生物学重点实验室 厦门 361005
Exploring the Nanoworld: Development and Single-Particle-Level Characterization of Nano-flow Cytometry Technology
CAI Nian-gui,CHEN Xin,ZHANG Qing-yuan,DI Hao-nan,ZHAN Xiao-zhen,CHEN Jun-yan,CHEN Hao,YAN Xiao-mei()
Key Laboratory of Spectrochemical Analysis &Instrumentation, Ministry of Education, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
 全文: PDF(2893 KB)   HTML
摘要:

纳米颗粒的准确表征对于推动生命科学认知、改善疾病诊断和治疗以及促进纳米科技的发展至关重要。由于纳米颗粒存在高度的个体差异性和异质性,迫切需要开发单颗粒水平的快速检测技术。基于瑞利散射与鞘流单分子荧光检测技术研发的纳米流式检测技术(nano-flow cytometry,nFCM),能够以每分钟高达10 000颗粒的速率实现对人工合成纳米颗粒(7~500 nm)以及细胞外囊泡、病毒等天然生物纳米颗粒的粒径分布、颗粒浓度和生化性状的高灵敏、高选择性、高通量多参数分析。通过讨论nFCM研发的重要性、挑战、进展以及产业转化,回顾该技术在纳米颗粒研究中的应用,并展望其未来的应用前景。

关键词: 纳米流式检测技术单颗粒分析纳米颗粒病毒细胞外囊泡    
Abstract:

Accurate characterization of nanoparticles is of paramount importance for advancing our understanding of life sciences, improving disease diagnosis and treatment, and fostering the development of nanotechnology. Due to the high degree of individual variation and heterogeneity among nanoparticles, there is an urgent need for the development of rapid detection techniques at the single-particle level. This review article introduces the development of nano-flow cytometry (nFCM), a technology based on Rayleigh scattering and sheath-flow single-molecule fluorescence detection. nFCM can achieve highly sensitive, selective, and high-throughput multi-parameter analysis of the size distribution, particle concentration, and biochemical characteristics of synthetic nanoparticles (7 ~ 500 nm), as well as naturally occurring biological nanoparticles such as extracellular vesicles and viruses, at a rate of up to 10 000 particles per minute. The article discusses the significance, challenges, progress, and industrial transformation of the nFCM development, reviews its applications in nanoparticle research, and discusses its future application prospects.

Key words: Nano-flow cytometry    Single-particle analysis    Nanoparticles    Virus    Extracellular vesicles
收稿日期: 2023-10-09 出版日期: 2024-01-16
ZTFLH:  Q819  
基金资助: *国家自然科学基金(21627811);国家自然科学基金(21934004);国家重点研发计划(2021YFA0909400)
通讯作者: **电子信箱: xmyan@xmu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蔡年桂
陈欣
张清源
底浩楠
詹小贞
陈军岩
陈昊
颜晓梅

引用本文:

蔡年桂, 陈欣, 张清源, 底浩楠, 詹小贞, 陈军岩, 陈昊, 颜晓梅. 窥探纳米世界:纳米流式检测技术的研发及单颗粒水平表征应用*[J]. 中国生物工程杂志, 2023, 43(12): 1-13.

Nian-gui CAI, Xin CHEN, Qing-yuan ZHANG, Hao-nan DI, Xiao-zhen ZHAN, Jun-yan CHEN, Hao CHEN, Xiao-mei YAN. Exploring the Nanoworld: Development and Single-Particle-Level Characterization of Nano-flow Cytometry Technology. China Biotechnology, 2023, 43(12): 1-13.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2310065        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I12/1

图1  nFCM的仪器示意图及应用领域
图2  nFCM在纳米材料单颗粒水平表征中的应用
图3  nFCM在病毒单颗粒水平表征中的应用
图4  nFCM在纳米药物单颗粒水表征中的应用
图5  nFCM在EVs单颗粒水平表征中的应用
图6  nFCM在工程化EVs单颗粒水平表征中的应用
[1] Daaboul G G, Yurt A, Zhang X, et al. High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Letters, 2010, 10(11): 4727-4731.
doi: 10.1021/nl103210p pmid: 20964282
[2] Fraikin J L, Teesalu T, McKenney C M, et al. A high-throughput label-free nanoparticle analyser. Nature Nanotechnology, 2011, 6(5): 308-313.
doi: 10.1038/nnano.2011.24
[3] Fumagalli L, Esteban-Ferrer D, Cuervo A, et al. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces. Nature Materials, 2012, 11(9): 808-816.
doi: 10.1038/nmat3369 pmid: 22772654
[4] Kashkanova A D, Blessing M, Gemeinhardt A, et al. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 2022, 19(5): 586-593.
doi: 10.1038/s41592-022-01460-z pmid: 35534632
[5] Lian H, He S B, Chen C X, et al. Flow cytometric analysis of nanoscale biological particles and organelles. Annual Review of Analytical Chemistry, 2019, 12: 389-409.
doi: 10.1146/anchem.2019.12.issue-1
[6] Hercher M, Mueller W, Shapiro H M. Detection and discrimination of individual viruses by flow cytometry. Journal of Histochemistry & Cytochemistry, 1979, 27(1): 350-352.
doi: 10.1177/27.1.374599
[7] Steen H B. Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles. Cytometry A, 2004, 57A(2): 94-99.
doi: 10.1002/cyto.a.v57a:2
[8] van der Vlist E J, Nolte-’t Hoen E N M, Stoorvogel W, et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nature Protocols, 2012, 7(7): 1311-1326.
doi: 10.1038/nprot.2012.065 pmid: 22722367
[9] Stoner S A, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytometry A, 2016, 89(2): 196-206.
doi: 10.1002/cyto.a.v89.2
[10] Andronico L A, Jiang Y F, Jung S R, et al. Sizing extracellular vesicles using membrane dyes and a single molecule-sensitive flow analyzer. Analytical Chemistry, 2021, 93(14): 5897-5905.
doi: 10.1021/acs.analchem.1c00253 pmid: 33784071
[11] Kim Y, van der Pol E, Arafa A, et al. Calibration and standardization of extracellular vesicle measurements by flow cytometry for translational prostate cancer research. Nanoscale, 2022, 14(27): 9781-9795.
[12] Yang L L, Zhu S B, Hang W, et al. Development of an ultrasensitive dual-channel flow cytometer for the individual analysis of nanosized particles and biomolecules. Analytical Chemistry, 2009, 81(7): 2555-2563.
doi: 10.1021/ac802464a pmid: 19260698
[13] Zhu S B, Wang S, Yang L L, et al. Progress in the development of techniques based on light scattering for single nanoparticle detection. Science China Chemistry, 2011, 54(8): 1244-1253.
doi: 10.1007/s11426-011-4313-z
[14] Zhu S B, Yang L L, Long Y, et al. Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory-built high-sensitivity flow cytometer. Journal of the American Chemical Society, 2010, 132(35): 12176-12178.
doi: 10.1021/ja104052c pmid: 20707319
[15] Zhu S B, Ma L, Wang S, et al. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano, 2014, 8(10): 10998-11006.
doi: 10.1021/nn505162u pmid: 25300001
[16] Tian Y, Ma L, Gong M F, et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano, 2018, 12(1): 671-680.
doi: 10.1021/acsnano.7b07782 pmid: 29300458
[17] Ma L, Zhu S B, Tian Y, et al. Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry. Angewandte Chemie International Edition, 2016, 55(35): 10239-10243.
[18] Zhang W Q, Tian Y, Hu X X, et al. Light-scattering sizing of single submicron particles by high-sensitivity flow cytometry. Analytical Chemistry, 2018, 90(21): 12768-12775.
doi: 10.1021/acs.analchem.8b03135 pmid: 30277744
[19] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709): 538-544.
doi: 10.1126/science.1104274 pmid: 15681376
[20] Zhou J, Yang Y, Zhang C. Y. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chemical Reviews, 2015, 115(21): 11669-11717.
doi: 10.1021/acs.chemrev.5b00049 pmid: 26446443
[21] Wang S, Li L H, Jin S H, et al. Rapid and quantitative measurement of single quantum dots in a sheath flow cuvette. Analytical Chemistry, 2017, 89(18): 9857-9863.
doi: 10.1021/acs.analchem.7b01885 pmid: 28820244
[22] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824-830.
doi: 10.1038/nature01937
[23] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, 58: 267-297.
pmid: 17067281
[24] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.
doi: 10.1021/jp026731y
[25] Dragan A I, Bishop E S, Casas-Finet J R, et al. Distance dependence of metal-enhanced fluorescence. Plasmonics, 2012, 7(4): 739-744.
doi: 10.1007/s11468-012-9366-0
[26] Li C Y, Zhu J F. Metal-enhanced fluorescence of OG-488 doped in Au@SiO2 core-shell nanoparticles. Materials Letters, 2013, 112: 169-172.
doi: 10.1016/j.matlet.2013.09.021
[27] Yan Y, Meng L Y, Zhang W Q, et al. High-throughput single-particle analysis of metal-enhanced fluorescence in free solution using Ag@SiO2 core-shell nanoparticles. ACS Sensors, 2017, 2(9): 1369-1376.
doi: 10.1021/acssensors.7b00522 pmid: 28836759
[28] Li J R, Howard C B, Dey S, et al. A universal reagent for detection of emerging diseases using bioengineered multifunctional yeast nanofragments. Nature Nanotechnology, 2023, 18(10): 1222-1229.
doi: 10.1038/s41565-023-01415-1 pmid: 37291255
[29] Krupovic M, Dolja V V, Koonin E V. Origin of viruses: primordial replicators recruiting capsids from hosts. Nature Reviews Microbiology, 2019, 17(7): 449-458.
doi: 10.1038/s41579-019-0205-6 pmid: 31142823
[30] Steinmetz N F. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, 6(5): 634-641.
doi: 10.1016/j.nano.2010.04.005
[31] Lippé R. Flow virometry: a powerful tool to functionally characterize viruses. Journal of Virology, 2018, 92(3): e01765-e01717.
[32] Brussaard C P D. Optimization of procedures for counting viruses by flow cytometry. Applied and Environmental Microbiology, 2004, 70(3): 1506-1513.
doi: 10.1128/AEM.70.3.1506-1513.2004 pmid: 15006772
[33] Brown M R, Camézuli S, Davenport R J, et al. Flow cytometric quantification of viruses in activated sludge. Water Research, 2015, 68: 414-422.
pmid: 25462748
[34] Gaudin R, Barteneva N S. Sorting of small infectious virus particles by flow virometry reveals distinct infectivity profiles. Nature Communications, 2015, 6:6022.
doi: 10.1038/ncomms7022 pmid: 25641385
[35] Tang V A, Renner T M, Varette O, et al. Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine, 2016, 34(42): 5082-5089.
doi: S0264-410X(16)30770-8 pmid: 27614781
[36] Landowski M, Dabundo J, Liu Q, et al. Nipah virion entry kinetics, composition, and conformational changes determined by enzymatic virus-like particles and new flow virometry tools. Journal of Virology, 2014, 88(24): 14197-14206.
doi: 10.1128/JVI.01632-14 pmid: 25275126
[37] Zicari S, Arakelyan A, Fitzgerald W, et al. Evaluation of the maturation of individual Dengue virions with flow virometry. Virology, 2016, 488: 20-27.
doi: 10.1016/j.virol.2015.10.021 pmid: 26590794
[38] El Bilali N, Duron J, Gingras D, et al. Quantitative evaluation of protein heterogeneity within Herpes simplex virus 1 particles. Journal of Virology, 2017, 91(10): e00320-17.
[39] Arakelyan A, Fitzgerald W, King D F, et al. Flow virometry analysis of envelope glycoprotein conformations on individual HIV virions. Scientific Reports, 2017, 7: 948.
doi: 10.1038/s41598-017-00935-w pmid: 28424455
[40] Vlasak J, Hoang V M, Christanti S, et al. Use of flow cytometry for characterization of human cytomegalovirus vaccine particles. Vaccine, 2016, 34(20): 2321-2328.
doi: 10.1016/j.vaccine.2016.03.067 pmid: 27020711
[41] Niu Q, Ma L, Zhu S B, et al. Quantitative assessment of the physical virus titer and purity by ultrasensitive flow virometry. Angewandte Chemie International Edition, 2021, 60(17): 9351-9356.
[42] Tian Y, Xue C F, Zhang W Q, et al. Refractive index determination of individual viruses and small extracellular vesicles in aqueous media using nano-flow cytometry. Analytical Chemistry, 2022, 94(41): 14299-14307.
doi: 10.1021/acs.analchem.2c02833 pmid: 36084271
[43] Ji D Z, Zhang Y J, Sun J Q, et al. An engineered influenza virus to deliver antigens for lung cancer vaccination. Nature Biotechnology, 2023. doi: 10.1038/s41587-023-01796-7.
doi: 10.1038/s41587-023-01796-7
[44] Lv P, Liu X, Chen X M, et al. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano Letters, 2019, 19(5): 2993-3001.
doi: 10.1021/acs.nanolett.9b00145 pmid: 30964695
[45] Mitchell M J, Billingsley M M, Haley R M, et al. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20(2): 101-124.
doi: 10.1038/s41573-020-0090-8 pmid: 33277608
[46] Halwani A A. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics, 2022, 14(1): 106.
doi: 10.3390/pharmaceutics14010106
[47] Barenholz Y. Doxil®-The first FDA-approved nano-drug: lessons learned. Journal of Controlled Release, 2012, 160(2): 117-134.
doi: 10.1016/j.jconrel.2012.03.020
[48] Chen C X, Zhu S B, Wang S, et al. Multiparameter quantification of liposomal nanomedicines at the single-particle level by high-sensitivity flow cytometry. ACS Applied Materials & Interfaces, 2017, 9(16): 13913-13919.
[49] Alkilany A M, Zhu L, Weller H, et al. Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Advanced Drug Delivery Reviews, 2019, 143: 22-36.
doi: S0169-409X(19)30060-2 pmid: 31158406
[50] Chen C X, Zhou Y X, Chen C, et al. Quantification of available ligand density on the surface of targeted liposomal nanomedicines at the single-particle level. ACS Nano, 2022, 16(4): 6886-6897.
doi: 10.1021/acsnano.2c02084 pmid: 35394292
[51] Chen C X, Gao K M, Lian H, et al. Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug release properties. Biosensors and Bioelectronics, 2019, 131: 185-192.
doi: 10.1016/j.bios.2019.02.016
[52] Fang R H, Gao W W, Zhang L F. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nature Reviews Clinical Oncology, 2023, 20(1): 33-48.
doi: 10.1038/s41571-022-00699-x
[53] Fang R H, Kroll A V, Gao W W, et al. Cell membrane coating nanotechnology. Advanced Materials, 2018, 30(23): e1706759.
[54] Chen W J, Tan Q, Guo M F, et al. Tumor cell-derived microparticles packaging monocarboxylate transporter 4 inhibitor fluvastatin suppress lung adenocarcinoma via tumor microenvironment remodeling and improve chemotherapy. Chemical Engineering Journal, 2023, 451: 138972.
doi: 10.1016/j.cej.2022.138972
[55] Qiao Q, Liu X, Cui K X, et al. Hybrid biomimetic nanovesicles to drive high lung biodistribution and prevent cytokine storm for ARDS treatment. ACS Nano, 2022, 16(9): 15124-15140.
doi: 10.1021/acsnano.2c06357 pmid: 36037505
[56] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 2013, 200(4): 373-383.
doi: 10.1083/jcb.201211138 pmid: 23420871
[57] Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977.
doi: 10.1126/science.aau6977
[58] van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 2018, 19(4): 213-228.
doi: 10.1038/nrm.2017.125 pmid: 29339798
[59] Herrmann I K, Wood M J A, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nature Nanotechnology, 2021, 16(7): 748-759.
doi: 10.1038/s41565-021-00931-2 pmid: 34211166
[60] Zhang J, Wu J C, Wang G Z, et al. Extracellular vesicles: techniques and biomedical applications related to single vesicle analysis. ACS Nano, 2023, 17(18): 17668-17698.
doi: 10.1021/acsnano.3c03172 pmid: 37695614
[61] Tian Y, Gong M F, Hu Y Y, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. Journal of Extracellular Vesicles, 2019, 9(1): 1697028.
doi: 10.1080/20013078.2019.1697028
[62] Hu Y Y, Tian Y, Di H N, et al. Noninvasive diagnosis of nasopharyngeal carcinoma based on phenotypic profiling of viral and tumor markers on plasma extracellular vesicles. Analytical Chemistry, 2022, 94(27): 9740-9749.
doi: 10.1021/acs.analchem.2c01311
[63] Thakur B K, Zhang H Y, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Research, 2014, 24(6): 766-769.
doi: 10.1038/cr.2014.44 pmid: 24710597
[64] Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): E9066-E9075.
[65] Liu H S, Tian Y, Xue C F, et al. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. Journal of Extracellular Vesicles, 2022, 11(4): e12206.
doi: 10.1002/jev2.v11.4
[66] Chen C, Cai N G, Niu Q, et al. Quantitative assessment of lipophilic membrane dye-based labelling of extracellular vesicles by nano-flow cytometry. Journal of Extracellular Vesicles, 2023, 12(8): e12351.
[67] Wang L W, Wang D, Ye Z M, et al. Engineering extracellular vesicles as delivery systems in therapeutic applications. Advanced Science, 2023, 10(17): e2300552.
[68] Wu Q, Fu X L, Li X, et al. Modification of adipose mesenchymal stem cells-derived small extracellular vesicles with fibrin-targeting peptide CREKA for enhanced bone repair. Bioactive Materials, 2023, 20: 208-220.
doi: 10.1016/j.bioactmat.2022.05.031 pmid: 35702606
[69] Chen C X, Sun M D, Liu X, et al. General and mild modification of food-derived extracellular vesicles for enhanced cell targeting. Nanoscale, 2021, 13(5): 3061-3069.
doi: 10.1039/d0nr06309f pmid: 33521806
[70] Lv Q J, Cheng L L, Lu Y, et al. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Advanced Science, 2020, 7(18): 2000515.
doi: 10.1002/advs.v7.18
[71] Silva A M, Lázaro-Ibáñez E, Gunnarsson A, et al. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. Journal of Extracellular Vesicles, 2021, 10(10): e12130.
doi: 10.1002/jev2.v10.10
[72] Dooley K, McConnell R E, Xu K, et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Molecular Therapy, 2021, 29(5): 1729-1743.
doi: 10.1016/j.ymthe.2021.01.020 pmid: 33484965
[73] Chen C X, Sun M D, Wang J L, et al. Active cargo loading into extracellular vesicles: highlights the heterogeneous encapsulation behaviour. Journal of Extracellular Vesicles, 2021, 10(13): e12163.
doi: 10.1002/jev2.v10.13
[74] Chen C, Li Y R, Wang Q Q, et al. Single-particle assessment of six different drug-loading strategies for incorporating doxorubicin into small extracellular vesicles. Analytical and Bioanalytical Chemistry, 2023, 415(7): 1287-1298.
doi: 10.1007/s00216-022-04248-4
[1] 井汇源, 段二珍, 赵攀登. 突变MARCH作用靶点在假病毒产率提升中的应用*[J]. 中国生物工程杂志, 2023, 43(9): 55-61.
[2] 林亚洁, 刘畅, 郭少奇, 余梓豪, 李明豫, 刘君妃, 郑子峥, 夏宁邵. HEV与细胞结合的氨基酸位点分析[J]. 中国生物工程杂志, 2023, 43(7): 1-11.
[3] 刘霖颖, 沈洁, 陈亮, 张虎成, 赵新颖. 仿生纳米载药体系的制备及在疾病治疗中的应用*[J]. 中国生物工程杂志, 2023, 43(7): 114-121.
[4] 韩佳, 范月蕾, 毛开云. 溶瘤病毒市场及研发格局分析*[J]. 中国生物工程杂志, 2023, 43(6): 87-101.
[5] 王泽华, 张丽昀, 马春燕. 间充质干细胞来源细胞外囊泡对肺部疾病作用研究进展*[J]. 中国生物工程杂志, 2023, 43(5): 76-84.
[6] 徐炜民, 邓鑫, 伍锐. 促凋亡蛋白BAK的功能及在病毒感染中作用的研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 130-140.
[7] 唐鑫怡, 张亚坤, 陈双, 彭余, 蒋亭亭, 刘耀, 杨再林. HIV相关弥漫大B细胞淋巴瘤预后评估生物学标志物研究进展*[J]. 中国生物工程杂志, 2023, 43(12): 24-31.
[8] 谷晓丽, 杨秀鹏, 喻丽, 凌志明, 许勇钢. 慢病毒介导的TET2基因稳定敲低SKM-1细胞株的构建及验证*[J]. 中国生物工程杂志, 2023, 43(12): 160-168.
[9] 项建, 叶邦策, 尹斌成. 功能化外泌体重编程免疫细胞与肿瘤细胞之间靶向识别*[J]. 中国生物工程杂志, 2023, 43(10): 1-9.
[10] 章嫣,马文豪,赵天意,吴小兵,盛望,杨怡姝. 人β-半乳糖苷酶R299L突变体的获得与活性研究*[J]. 中国生物工程杂志, 2022, 42(9): 39-49.
[11] 金喆彤,芮雪,姜侯喆,王晶晶,陈玉根. mRNA疫苗非病毒载体递送系统研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 58-66.
[12] 王桃雪,刘倩,齐浩. 新型冠状病毒(SARS-CoV-2)SNV分型检测技术[J]. 中国生物工程杂志, 2022, 42(8): 63-73.
[13] 于璐,胡暄,张小鹃,牛安娜,张晓鹏. 功能性新型冠状病毒RBD结构域在毕赤酵母表面的展示*[J]. 中国生物工程杂志, 2022, 42(6): 30-38.
[14] 钱曼云,王继伟,李颢泽,王瑞华,刘云,李亚峰. SARS-CoV-2重组S1和S蛋白疫苗诱导保护性免疫的研究*[J]. 中国生物工程杂志, 2022, 42(5): 106-116.
[15] 卢卉双,马家秀,金佳佩,张津,李亚兰,蔡雪飞. 呈现新型冠状病毒RBD抗原病毒样颗粒的表达与鉴定*[J]. 中国生物工程杂志, 2022, 42(5): 117-123.