新型电化学传感器在生物分子检测中的研究进展*

郭红莲, 路小欢, 李琪琳, 张德太, 王琳

中国生物工程杂志 ›› 2024, Vol. 44 ›› Issue (5) : 99-107.

PDF(894 KB)
PDF(894 KB)
中国生物工程杂志 ›› 2024, Vol. 44 ›› Issue (5) : 99-107. DOI: 10.13523/j.cb.2310039
综述

新型电化学传感器在生物分子检测中的研究进展*

作者信息 +

Research Progress in Novel Electrochemical Sensors for Biomolecular Detection

Author information +
文章历史 +

摘要

随着“提高全民健康素养”的号召深入人心,自主健康监测的需求也逐渐扩大,代谢物分析在健康管理过程中占据不可替代的重要作用。与质谱法、色谱法和光谱法等传统分析技术相比,电化学传感器因其选择性强、灵敏度高和检测范围宽,在生物医学、环境科学、材料科学等领域均显示出巨大的应用潜力。目前,科研工作者已经开发出多种面向生物代谢物检测的电化学传感器,用于确定离体体液中疾病标志物的水平或进行在体实时动态监测。以生物分子检测为切入点,综述了便携式、植入式和可穿戴式新型电化学传感器在疾病相关代谢物分析中的应用进展,并对这些传感装置进行总结和比较,以期为生物传感器的创新及临床应用拓展提供参考。

Abstract

The need for self-directed health monitoring has been steadily increasing as the call for “improving the health literacy of the whole nation” has been favorably received, and metabolite analysis plays an indispensable role in the process of health management. Compared to traditional analytical techniques such as mass spectrometry, chromatography and spectroscopy, electrochemical sensors have shown great potential for applications in biomedical, environmental, and material sciences due to their high selectivity, high sensitivity, and wide detection range. Currently, researchers have developed several electrochemical sensors focused on the detection of biometabolites, both for the determination of disease markers in isolated body fluids and for real-time dynamic in vivo monitoring. Taking biomolecular detection as the starting point, we review and compare the research progress in portable, implantable, and wearable electrochemical sensors for the analysis of disease-related metabolites and their comparison, which may provide a reference for the generation of novel sensors and the expansion of clinical applications.

关键词

分子检测 / 电化学 / 传感器 / 生物医学

Key words

Molecular detection / Electrochemistry / Sensors / Biomedicine

引用本文

导出引用
郭红莲, 路小欢, 李琪琳, . 新型电化学传感器在生物分子检测中的研究进展*[J]. 中国生物工程杂志, 2024, 44(5): 99-107 https://doi.org/10.13523/j.cb.2310039
Honglian GUO, Xiaohuan LU, Qilin LI, et al. Research Progress in Novel Electrochemical Sensors for Biomolecular Detection[J]. China Biotechnology, 2024, 44(5): 99-107 https://doi.org/10.13523/j.cb.2310039
中图分类号: Q819   
为实现个性化医疗健康管理,研究人员已开发出一系列电化学生物传感器,能对靶标生物分子进行即时、快速、便捷检测,从而将临床检测从专业实验室扩展到公共场所,包括医院、保健机构和普通家庭等。目前,美国食品药品监督管理局(Food and Drug Administration, FDA)批准的生物传感器主要局限在血糖监测仪和心血管监护仪两大类。虽然已有多种电化学传感器能准确、敏感、特异性检测一系列生物体液(如血清、尿液、汗液、唾液和脑脊液等)中与疾病相关的代谢物分子,但由于难以将器件集成和小型化,临床转化仍然受限[1]。基于此,本文从电化学生物传感器与数字医疗健康结合的角度出发,详细讨论了集成式、植入式和穿戴式三类新型电化学传感装置在疾病相关代谢物检测方面的研究进展,并对其临床转化和商业应用潜力作初步探讨。

1 电化学传感器在生物分子检测中的意义

生物传感器是一类独立的分析装置,由生物识别元件和信号转导元件(电化学、光学、声学和机械换能器)构成,在生物分析领域应用广泛。近年来,纳米材料、抗体和寡核苷酸/肽适体等电极表面改性材料和信号放大策略的涌现,为电分析生物平台的发展填补了许多不足,赋予电化学生物传感器简便、经济以及与多重检测和即时检测(point-of-care test,POCT)医疗新策略兼容的特点,使之逐渐成为各种疾病生物标志物的可靠分析工具。除了高灵敏度和高精度,与传统色谱、光谱、质谱或免疫学等分析技术相比较,电化学分析平台的显著优势在于可以直接在复杂的生物体液或药品、食物样本,甚至活体内对特定分子进行连续、实时、快速的原位检测。现有研究发现,依赖生物亲和识别和电催化转换效应,电化学分析系统对多种生化代谢物(如氨基酸、乳酸、葡萄糖、乙醇、维生素、尿酸和胆固醇)、肿瘤标志物、药物(如左旋多巴)和病原菌标志物(如霍乱毒素)表现出优异的检测性能[2-8]。目前,临床诊断性检验不仅要求便捷、准确,检验场所更是逐步走出临床实验室且趋向多元化。例如,由医院护士进行床旁检测,甚至由患者自行在家中实行。对于这些新兴的非实验室分析手段,电化学传感器无疑提供了一种简单、快速、经济和有效的策略,在医疗检测领域展现出巨大的应用潜力。

2 新型电化学传感器

2.1 便携式小型电化学传感设备

体外诊断(in vitro diagnostic,IVD)是指对人体样本(血液、体液及组织)进行定性或定量检测,进而判断疾病或机体生理功能的诊断方法。目前IVD已经成为疾病预防、诊断治疗必不可少的医学手段,提供了约80%的临床诊断信息。电化学传感器凭借其固有优势,在IVD领域具有巨大的应用潜力,尤其是当代智能手机驱动的无线数据传输,更为传感装置的智能数字化分析拓宽了道路[9-10]。如图1所示,Fiore等[11]设计了一种简易便携的小型酪氨酸测定仪,由一次性丝网印刷电极(screen-printed electrode, SPE)试纸和手持式恒电位仪EmStat3 Blue组成。SPE包括透明的柔性聚氨酯载体、石墨基油墨构成的工作电极和辅助电极以及银基油墨构成的参比电极,其中工作电极表面还修饰了炭黑粉末以提高传感精度,能在生理缓冲液中准确测定30~500 μmol/L范围内的酪氨酸,灵敏度为0.043 μA·L/μmol,检测限低至4.4 μmol/L。人血清样品经过滤洗脱去除干扰物质色氨酸后即可滴加到SPE表面进行孵育,由EmStat3 Blue测量获得的伏安数据可通过蓝牙传输到智能手机的PStouch应用软件中进行计算分析并输出酪氨酸浓度,操作便捷且用时少于10 min。但该装置不适用于全血样本的直接分析,甚至依赖于吸附柱预处理来去除血清中的电活性干扰物质,因此还有待改进。但是,SPE和智能手机辅助的恒电位仪的有机整合使该方法具备独特的经济、技术和生态优势。一方面,市面上已经推出了多种体积更小、成本更低的便携式恒电位仪,如雷迪美特中国有限公司于2019年生产的Sensit Smart(U盘式电化学分析仪,尺寸仅为43 mm×25 mm×11 mm)和2020年生产的Sensit BT(迷你型电化学分析仪,内置锂电池和蓝牙功能)等产品,均便于与智能手机建立无线通信[10]。另一方面,SPE可以使用塑料和导电浆料等低成本材料通过丝网印刷技术进行大规模印刷和切割来达到量产化,进一步降低了整个分析装置的成本[12]
图1 智能手机辅助的小型便携酪氨酸测定仪示意图[11]

Fig.1 Schematic of the smartphone-assisted portable tyrosine sensor[11]

Full size|PPT slide

苯丙酮尿症(phenylketonuria,PKU)是最常见的遗传性氨基酸代谢紊乱病之一,在我国的发病率为6.43/10万,好发于儿童和青少年,主要引起神经系统病变,未经治疗的儿童通常表现为严重的智力障碍以及身体和行为异常[13]。尽管PKU无法治愈,但对新生儿给予早期筛查(血液或尿液)和预防性饮食可以有效防止对神经系统的不可逆性损害,从而减轻患者的痛苦。Xu等[14]设计了一种贵金属复合纳米颗粒修饰的SPE,用于快速定量苯丙酮酸和苯乙酸,对PKU的便捷诊断和病情监测具有重要意义。该研究制备的SPE尺寸仅为8 mm×38 mm,包含碳基油墨印刷的工作电极和对电极,Ag/AgCl混合油墨印刷的参考电极(直径1.2 mm)和聚对苯二甲酸乙二醇酯基板,并通过喷涂打印将PtPd@ZIF-67纳米复合材料均匀沉积在工作电极表面以增强与苯丙酮酸代谢物的相互作用,加快电子转移。PtPd@ZIF-67改性的微传感器能准确检测20 nmol/L至200 μmol/L内的苯丙酮酸[检测限(LOD)= 0.1 nmol/L],不受尿素、尿酸、葡萄糖、肌酸酐等物质的干扰。然而上述检测性能均在磷酸盐缓冲液中进行验证,尚未对全血样本进行分析测试,实际应用效果还有待研究。相比之下,Idili等[15]发明的丝网印刷金电极(33 mm×10 mm×0.175 mm)可以直接对稀释血液进行苯丙氨酸测定,样本量仅需0.1 μL。总之,这种微电极的小尺寸结构特征不仅降低了材料生产成本,甚至只需微升级样本即可完成测试,更加适合临床上采集新生儿足跟部外周血以筛查PKU的实际场景。
由于生物流体样本内容物固有的复杂性,往往需要前述提到的预处理(洗脱、离心、稀释、吸附等)、信号放大和连续分析。受拉力与绳驱动离心机的启发,中国科学院研究团队将手动离心方式与旋转阀纸基免疫分析方法集成于纸芯片上(成本约0.5美元),构建了同时具备全血离心功能与免疫分析功能的微流控纸芯片,配合智能手机或便携式比色分析仪器,在一个纸芯片上实现了从全血离心到免疫分析结果呈现的全过程[16-17]。可见,将SPE与微流控系统、无线通信单元、信号处理单元和电源单元集成以制造电子传感芯片实验室[18],也是便携式电化学传感装置发展的热点方向。

2.2 集成式可植入电化学传感装置

便携式电化学装置检测末梢血高度准确,但依赖于频繁、有创的样本采集,而植入式生物传感器结合了有创采样的高精度(皮下或血管内等)和连续监测能力,能连续测定体内某些随时空变化的重要生理或病理参数,如葡萄糖、乳酸、钙离子或氧浓度等[9,19],尤其适用于脑内生物标志物[如神经递质多巴胺和5-羟色胺(5-hydroxytryptamine,5-HT)]的体内监测,可提供神经元活动的动态信息。根据基质材料不同,植入式微电极大致分为柔性和刚性两类。与大多数由惰性金属(Au[20]、Pt[4]和Ir[21])或半导体材料[22]制备的刚性电极相比,植入式柔性电极在生物相容性、导电性和稳定性上均具有突出优势,能与软组织无缝接合,避免了软组织与电极之间因机械强度错配导致的炎症反应或装置故障[23]。例如,柔软的碳纤电极(carbon-fiber electrode,CFE)可用于原位检测脑部快感中枢内释放的多巴胺,将aptCFE和刺激电极分别植入活体大鼠伏隔核(nucleus accumbens,NAc)和内侧前脑束(medial forebrain bundle,MFB)区域,aptCFE能在几秒内精准捕捉电刺激引发的多巴胺释放电流信号(约2 μmol/L)[15]。近期,Wang等[24]通过模拟肌肉组织的层次结构,将功能化的多壁碳纳米管依次扭曲成纳米原纤维、微纤维和螺旋纤维束(直径从1 μm到数百微米),形成具有较低弹性模量的柔性材料,与组织和细胞的弯曲刚度相匹配。具有一维结构的碳纳米管纤维能完美适配注射器针头,在流体辅助下纤维一端被精准递送到目标组织(如肿瘤、血管内、脑、心肌等),而另一端保持在组织外部以便于信号连接。此外,该研究通过设计包括电极、信号转换层、响应层和绝缘层的同轴叠层结构,再用一系列功能层涂覆或改性纤维,制造了用于检测代谢物和生理信号的柔性可植入多重传感器,与多种组织匹配良好,有效避免了植入电极对组织造成的二次机械损伤。
可植入传感器的电极通常由生物相容性材料制成,但作为异物,难以完全避免生物污染和异物反应[25]。由于宿主将多数植入传感器视为“异物”,在伤口愈合过程中触发复杂的级联免疫信号:纤维蛋白原和其他蛋白质与植入物表面结合,然后吸引巨噬细胞迁移到局部,释放炎性细胞因子,从而刺激静止的成纤维细胞转化成肌成纤维细胞以合成前胶原蛋白。前胶原蛋白交联成熟后与其他细胞外基质蛋白形成一个致密的纤维囊,包裹住植入的“异物”,阻碍物质扩散,严重影响了生物传感器和药物/细胞递送装置等器件发挥正常功能[26-27]。例如,动态血糖监测仪因纤维化包裹和生物污染导致的噪声,需要进行每日校准,使用期限仅7~14天[28-29]。减轻或消除异物反应不仅可以提高传感器的检测性能,也能延长其使用寿命,更能有效避免局部炎症和纤维化反应。因此,电极外部最好涂覆有用于防止传感器结垢的生物相容性层[30]。例如,内源性气体小分子一氧化氮(nitric oxide,NO)能抑制血小板黏附和活化、炎症反应和细菌生长,因此,在器件表面修饰释放NO的聚合物涂层可以有效改善传感器(如心脏/血管内传感器)的生物相容性[31-32]
除了生物污染对检测性能的不利影响,分析物本身的电氧化产物在电极表面富集也是电极结垢和传感器信号衰减的原因之一。5-HT是一种具有良好电活性的兴奋性神经递质,由L-色氨酸经色氨酸羟化酶、脱羧酶催化形成。5-HT可以在碳电极表面直接氧化形成电流,但随着氧化反应的发生,产物迅速电聚合(以二聚体为主),低聚物通过π-π堆积作用强烈吸附在电极表面[33],这种结垢效应大大降低了电流响应和灵敏度,使电流型传感器失效。尽管使用具有还原性官能团的电极(如硼掺杂金刚石电极)能防止氧化产物的吸附,但大尺寸、高强度和低电子密度削弱了其在脑部应用中的生物相容性和灵敏度[34]。另外,通过施加超高电位或加快扫描速度,快速扫描循环伏安法(FSCV)能够起到清洁电极表面和减少产物停留时间的作用,但依然无法解决氧化产物持续积累问题,完全避免氧化产物的产生才是解决5-HT电化学传感的根本方法。因此,Zhu等[35]提出了一种无氧化还原反应的电位传感平台(galvanic redox potentiometry,GRP),用于活体动物脑内5-HT的自驱动传感。该GRP系统包括对5-HT敏感的阳极指示电极和嵌入K2IrCl6溶液中的阴极参比电极,只有当指示电极上发生分子识别,在双极体系中形成具有净负Gibbs自由能的电路时,传感器才能在静态条件下产生浓度依赖性开路电位(Eoc)响应。关键点在于,GRP系统工作环境接近零电流,因此在测量期间造成的氧化反应最弱,有效减少了常规安培传感器在5-HT检测时容易出现的电极钝化。此外,由于电势输出和分析物浓度符合能斯特方程,GRP传感器的灵敏度与电化学表面积无关,进一步消除了生物环境内丰富的蛋白质对电极的潜在生物污染效应。如图2所示,植入豚鼠的背侧中缝核(dorsal raphe nucleus,DRN)后,该GRP系统能在50 s内准确检测到高K+刺激(70 mmol/L)诱导的5-HT内源性释放,充分证明了植入式传感器在活体内优异的时空分辨率。
图2 GRP系统植入活体豚鼠脑背侧中缝核内的传感示意图[35]

Fig.2 Illustration of sensing in a living guinea pig brain with the GRP system[35]

Full size|PPT slide

目前,部分可植入电化学生物传感器已经进入商业化时代。例如,Senseonics公司生产的Eversense E3皮下植入式动态血糖仪于2022年获美国FDA批准上市。与多数连续血糖监测仪的构造相同,Eversense E3由传感器(18.3 mm×3.5 mm)和发射器(37.6 mm×48 mm×8.8 mm)组成,通过蓝牙将血糖信息传输到移动设备中,能够提供长达180天的动态血糖值;Neuralink公司发明的植入式脑机接口设备通过在大脑中植入电极丝来“读取”脑电波信号,有望“解码大脑”以解决阿尔茨海默病、脑卒中、癫痫等脑部疾病。总之,作为组织与电子的接口,植入式传感器在生物电子医疗领域发挥着重要作用。

2.3 柔性可穿戴无线电化学传感器

近年来,柔性可穿戴传感器与远程医疗和精准医疗等概念相互贯穿,能主动、远程监测多种理化参数,显著提高了佩戴者的自我监测依从性和护理质量。目前,市面上的无创可穿戴传感器多与智能手表、手镯和隐形眼镜集成,主要集中在体温、心率、血压、血氧和葡萄糖等单个物理或生化参数的监测,多模态复合传感器正在深入探索中,电化学检测技术凭借其灵敏度高、成本低、制作速度快、易于小型化等优点在该领域得到广泛应用。
与目前用于实时监测的组织间质液、唾液、泪液相比,汗液最容易获取,其可以在皮肤表面通过运动、加热、压力、药物或离子刺激等非侵入性方式来采集。此外,汗液含有丰富的反映新陈代谢状况和疾病程度的理化标志物(包括电解质、代谢物和药物),与血浆水平具有良好的相关性。例如,汗液中的Na+可以反映机体是否发生电解质失衡或脱水,氯离子浓度异常升高可用于筛查囊性纤维化[36-37],乳酸水平可以提示肌肉疲劳或呼吸衰竭[38-39],葡萄糖水平变化可用于糖尿病病情管理[40],重金属浓度评估可为受试者提供早期预警[41]。因此,在各类穿戴式生物传感器中,通过与皮肤共性接触的表皮可穿戴生物传感器最受关注,其可以对汗液中的生物标志物进行实时分析,提供无创的动态健康监测[42-43]。常见的表皮传感器集成方式包括柔性电子皮肤、临时文身、腕带、贴片或纺织品等,这些装置可以确保传感器与皮肤紧密接触,并在机体运动时承受机械压力[43-46]
汗液采样在可穿戴生物传感中起重要作用,其物质浓度受多重因素影响,包括重吸收、蒸发、分泌速率、运动、情绪和分泌腺代谢等。微流控技术可以最大限度减少汗液污染、重吸收和蒸发,提供高时空分辨率的汗液动力学,已成为当下主流的采样系统。如图3所示,Wang等[3]设计的NutriTrek皮肤贴片型传感装置通过离子电渗模块透皮递送卡巴胆碱,按需刺激局部汗液产生,收集的汗液进入多入口微流控模块后到达传感区域进行原位分析。NutriTrek系统能与具有电子纸显示器的智能手表集成,并通过Na+和温度实时校准,准确监测汗液中9种必需氨基酸,常见维生素、代谢物和脂质(维生素B6、C、D3和E,葡萄糖,尿酸,肌酸,肌酐和胆固醇),激素(皮质醇)和药物(霉酚酸),实现了超广泛的生物标志物选择性检测,对个性化营养和精准治疗具有重要意义。类似地,通过将激光雕刻石墨烯(laser-engraved graphene,LEG)传感阵列与离子电渗和微流控模块结合,该团队又开发出针对汗液中C反应蛋白(C-reaction protein,CRP)的InflaStat系统,检测限低至8 pmol/L。当受控诱导的汗液进入微流体时,检测抗体(detector antibody,dAb)缀合的AuNPs在试剂储存池内重悬并与汗液沿蛇形通道被动混合以促进汗液CRP与dAb之间的动态结合。随后,混合物在检测室内与固定抗CRP捕获抗体的LEG-AuNPs工作电极结合并被后续流入的新鲜汗液冲洗去除[23]。cAb-CRP-dAb形成的“三明治”夹心结构能有效放大该检测器的灵敏度,实现了痕量水平汗液CRP分析(0 ~20 ng/mL)。这种自动微流控模块能够消除受试者出汗速率对电化学响应的影响,保证了检测结果的可靠性和不同佩戴者、不同检测时间点之间的可比性。
图3 NutriTrek装置图像及结构模块示意图[3]

Fig.3 Schematic of the wearable NutriTrek device and internal composition[3]

Full size|PPT slide

利用同一可穿戴传感器同时追踪生化标志物(电化学传感)和心血管参数(电生理传感或声学传感),能提供比目前单一化健康监测装置更为广阔的视野角度。此外,对于婴幼儿和老年人,简化的多模态可穿戴传感器可有效提高患者依从性,避免使用各种冗余繁杂的监护设备和外接线路。自Gao等[47]提出多路复用集成腕带式原位汗液传感器这一开创性研究以来,跨学科多模态传感开始迈向智能化和个性化时代。例如,将心电图电极与乳酸或葡萄糖传感器组合可以监测运动员的心血管性能、代谢、电解质平衡或体温[48-50],将超声换能器与乳酸盐、葡萄糖、乙醇和咖啡因传感器组合有助于分析理解机体日常活动(如进食、饮酒和运动)与血压、心率及生物标志物水平间的密切关系。
鉴于目前可穿戴设备的发展趋势主要在于与用于能量管理、信号采集和数据接口的电子器件集成,电源对于可穿戴传感器中的连续电化学分析不可或缺。多数可穿戴电子产品常采用商用聚合锂电池或纽扣电池供电,这类刚性元件不利于传感器与表皮的共形接触,甚至可能限制佩戴者的自由活动[51]。自供电系统可以利用摩擦纳米发电机(triboelectric nanogenerator,TENG)或压电纳米发电机将人体运动时产生的机械能转换为电能。例如,基于柔性印刷电路板的TENG自供电可穿戴设备可以连续监测汗液中的H+和Na+,电源输出功率(约416 mW/m2)可以满足多路生物传感器的供电需求[50]。另外,生物燃料电池可以利用生物电催化反应从体液所含的氧化还原物质中获取能量,为可穿戴生物传感器提供动力[52]。例如,自供电隐形眼镜可以以泪液中的抗坏血酸盐为燃料,监测泪液中的葡萄糖水平[53]。如果单一电源尚不足以为设备供电,还可以将TENG、生物燃料电池与超级电容器结合,从而实现更高功率输出。甚至可以将传感器和电池直接合并成单个元件。例如,在Ortega等[36]制备的囊性纤维化筛查贴片中,纸电池的输出功率完全由待测液体样品的电导率决定,当汗液电导率超过60 mmol/L等量NaCl时产生的电压高于金属氧化物半导体场效应晶体管阈值,允许电流流向电致变色显示器而呈现阳性结果。
综上,高度集成的可穿戴电化学生物传感器允许在分子水平对机体健康状态进行非侵入性和动态监测管理。例如,用于囊性纤维化诊断的智能自显示贴片[36-37],用于慢性伤口多重监测、受控释放抗菌药物和施加电刺激促进组织再生的多模式传感绷带等[54],用于葡萄糖监测-二甲双胍递送的糖尿病闭环管理装置[40]等。可穿戴电化学生物传感器还可集成到机器人中,以检测农业、安全和公共卫生应用中的危险材料和病原体。

3 挑战与展望

电化学生物传感器是定量分析体液中各种代谢物质的有力工具,具备设备简单、操作便捷、灵敏度高、响应速度快等优势,能为基础研究和医疗应用提供可靠的检测结果。将电化学生物传感器集成到便携式、植入式和可穿戴设备中可实现多重便捷检测,有望改善资源匮乏地区的检验诊断和健康管理方式。表1总结了上述三类传感器的突出优势和发展困境及其应用场景。总而言之,为降低传感器生产成本,可通过印刷(如丝网、喷墨、卷对卷和转印印刷)和微细加工(如光刻、蒸发、电子束蒸发和激光切割机)实现一次性、柔性和多电极电化学生物传感器与不同基底(包括塑料、柔性薄膜、纺织品和纸张)的批量制造和集成。然而,要使电化学生物传感器真正应用于临床诊疗,仍需致力于提高器件性能。例如,需要改进信号传导、调节(放大和过滤)、处理和无线传输方式以实现高灵敏度和网络化;需要尽可能将所有功能控制器和模块集成在一块电路板上以使传感器微型化;需要优化柔性电子器件和芯片组的封装等。此外,飞速发展的智能手机、5G通信和云计算服务可以通过无线通信技术(如蓝牙和近场通信)将电化学生物传感器获得的信息数字化,并与集成生物传感器的便携式、植入式或可穿戴设备形成闭环数字化医疗系统。随着市场渗透率的提高,电子传感器必然会产生大量的个人数据,因此必须研究下一代算法以保护数据安全和用户隐私。未来,多模态传感器与人工智能和机器学习的整合,必将进一步推动生物传感器在医疗健康领域的快速发展。
表1 新型电化学生物传感器比较

Table 1 Comparison of novel electrochemical biosensors

类型 优势 局限性 应用场景
便携式 便捷,尤其适合大规模人群筛查和POCT 长期监测需频繁采样 体液分析;环境监测;细胞和DNA成像
植入式 体内实时动态监测;高时空分辨率 异物反应和炎症;生物污染和干扰;依赖外部设备 神经递质动态监测
穿戴式 无创或微创,患者依从性高;可远程监控;连续监测 价格昂贵;工作产热会降低佩戴舒适性;依赖外部设备 体液分析;生理信号检测

参考文献

[1]
姜嘉烨, 吴娅芳, 黄志强, 等. 电化学生物传感器在乳腺癌肿瘤标志物检测中的研究进展. 中国生物工程杂志, 2023, 43(7): 101-113.
Jiang J Y, Wu Y F, Huang Z Q, et al. Research progress of electrochemical biosensor in the detection of tumor markers in breast cancer. China Biotechnology, 2023, 43(7): 101-113.
[2]
Tehrani F, Teymourian H, Wuerstle B, et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nature Biomedical Engineering, 2022, 6: 1214-1224.
Implementations of wearable microneedle-based arrays of sensors for the monitoring of multiple biomarkers in interstitial fluid have lacked system integration and evidence of robust analytical performance. Here we report the development and testing of a fully integrated wearable array of microneedles for the wireless and continuous real-time sensing of two metabolites (lactate and glucose, or alcohol and glucose) in the interstitial fluid of volunteers performing common daily activities. The device works with a custom smartphone app for data capture and visualization, comprises reusable electronics and a disposable microneedle array, and is optimized for system integration, cost-effective fabrication via advanced micromachining, easier assembly, biocompatibility, pain-free skin penetration and enhanced sensitivity. Single-analyte and dual-analyte measurements correlated well with the corresponding gold-standard measurements in blood or breath. Further validation of the technology in large populations with concurrent validation of sensor readouts through centralized laboratory tests should determine the robustness and utility of real-time simultaneous monitoring of several biomarkers in interstitial fluid.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
[3]
Wang M Q, Yang Y R, Min J H, et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nature Biomedical Engineering, 2022, 6: 1225-1235.
Wearable non-invasive biosensors for the continuous monitoring of metabolites in sweat can detect a few analytes at sufficiently high concentrations, typically during vigorous exercise so as to generate sufficient quantity of the biofluid. Here we report the design and performance of a wearable electrochemical biosensor for the continuous analysis, in sweat during physical exercise and at rest, of trace levels of multiple metabolites and nutrients, including all essential amino acids and vitamins. The biosensor consists of graphene electrodes that can be repeatedly regenerated in situ, functionalized with metabolite-specific antibody-like molecularly imprinted polymers and redox-active reporter nanoparticles, and integrated with modules for iontophoresis-based sweat induction, microfluidic sweat sampling, signal processing and calibration, and wireless communication. In volunteers, the biosensor enabled the real-time monitoring of the intake of amino acids and their levels during physical exercise, as well as the assessment of the risk of metabolic syndrome (by correlating amino acid levels in serum and sweat). The monitoring of metabolites for the early identification of abnormal health conditions could facilitate applications in precision nutrition.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
[4]
Li Q L, Zhang Y, Fan H L, et al. In vitro and in vivo detection of lactate with nanohybrid-functionalized Pt microelectrode facilitating assessment of tumor development. Biosensors & Bioelectronics, 2021, 191: 113474.
[5]
Jiang D F, Xu C S, Zhang Q W, et al. In-situ preparation of lactate-sensing membrane for the noninvasive and wearable analysis of sweat. Biosensors & Bioelectronics, 2022, 210: 114303.
[6]
Goud K Y, Moonla C, Mishra R K, et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management. ACS Sensors, 2019, 4(8): 2196-2204.
Levodopa is the most effective medication for treating Parkinson's disease (PD). However, because dose optimization is currently based on patients' report of symptoms, which are difficult for patients to describe, the management of PD is challenging. We report on a microneedle sensing platform for continuous minimally invasive orthogonal electrochemical monitoring of levodopa (L-Dopa). The new multimodal microneedle sensing platform relies on parallel simultaneous independent enzymatic-amperometric and nonenzymatic voltammetric detection of L-Dopa using different microneedles on the same sensor array patch. Such real-time orthogonal L-Dopa sensing offers a built-in redundancy and enhances the information content of the microneedle sensor arrays. This is accomplished by rapid detection of L-Dopa using square-wave voltammetry and chronoamperometry at unmodified and tyrosinase-modified carbon-paste microneedle electrodes, respectively. The new wearable microneedle sensor device displays an attractive analytical performance with the enzymatic and nonenzymatic L-Dopa microneedle sensors offering different dimensions of information while displaying high sensitivity (with a low detection limit), high selectivity in the presence of potential interferences, and good stability in artificial interstitial fluid (ISF). The attractive analytical performance and potential wearable applications of the microneedle sensor array have been demonstrated in a skin-mimicking phantom gel as well as upon penetration through mice skin. The design and attractive analytical performance of the new orthogonal wearable microneedle sensor array hold considerable promise for reliable, continuous, minimally invasive monitoring of L-Dopa in the ISF toward optimizing the dosing regimen of the drug and effective management of Parkinson disease.
[7]
Kim Y, Lee D, Seo Y, et al. Caco-2 cell-derived biomimetic electrochemical biosensor for cholera toxin detection. Biosensors & Bioelectronics, 2023, 226: 115105.
[8]
Webster T A, Sismaet H J, Conte J L, et al. Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosensors and Bioelectronics, 2014, 60: 265-270.
[9]
Zheng Y B, Omar R, Zhang R J, et al. A wearable microneedle-based extended gate transistor for real-time detection of sodium in interstitial fluids. Advanced Materials, 2022, 34(10): e2108607.
[10]
Su J, Chen S X, Dou Y Z, et al. Smartphone-based electrochemical biosensors for directly detecting serum-derived exosomes and monitoring their secretion. Analytical Chemistry, 2022, 94(7): 3235-3244.
[11]
Fiore L, De Lellis B, Mazzaracchio V, et al. Smartphone-assisted electrochemical sensor for reliable detection of tyrosine in serum. Talanta, 2022, 237: 122869.
[12]
Ferreira D C, Batistuti M R, Bachour B J, et al. Aptasensor based on screen-printed electrode for breast cancer detection in undiluted human serum. Bioelectrochemistry, 2021, 137: 107586.
[13]
Blau N, van Spronsen F J, Levy H L. Phenylketonuria. The Lancet, 2010, 376(9750): 1417-1427.
[14]
Xu X Y, Ji D Q, Zhang Y, et al. Detection of phenylketonuria markers using a ZIF-67 encapsulated PtPd alloy nanoparticle (PtPd@ZIF-67)-based disposable electrochemical microsensor. ACS Applied Materials & Interfaces, 2019, 11(23): 20734-20742.
[15]
Idili A, Parolo C, Ortega G, et al. Calibration-free measurement of phenylalanine levels in the blood using an electrochemical aptamer-based sensor suitable for point-of-care applications. ACS Sensors, 2019, 4(12): 3227-3233.
By analogy to the revolution the "home glucose monitor" created in the treatment of diabetes, the availability of a modular, "platform" technology able to measure nearly any metabolite, biomarker, or drug "at-home" in unprocessed, finger-prick volumes of whole blood could revolutionize the monitoring and treatment of disease. Thus motivated, we have adapted here the electrochemical aptamer-based sensing platform to the problem of rapidly and conveniently measuring the level of phenylalanine in the blood, an ability that would aid the monitoring and management of phenylketonuria (PKU). To achieve this, we exploited a previously reported DNA aptamer that recognizes phenylalanine in complex with a rhodium-based "receptor" that improves affinity. We re-engineered this to undergo a large-scale, binding-induced conformational change before modifying it with a methylene blue redox reporter and attaching it to a gold electrode that supports the appropriate electrochemical interrogation. The resultant sensor achieves a useful dynamic range of 90 nM to 7 μM. When challenged with finger-prick-scale sample volumes of the whole blood (diluted 1000-fold to match the sensor's dynamic range), the device achieves the accurate (±20%), calibration-free measurement of blood phenylalanine levels in minutes.
[16]
Li B W, Qi J, Fu L W, et al. Integrated hand-powered centrifugation and paper-based diagnosis with blood-in/answer-out capabilities. Biosensors & Bioelectronics, 2020, 165: 112282.
[17]
Qi J, Li B W, Zhou N, et al. The strategy of antibody-free biomarker analysis by in situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosensors & Bioelectronics, 2019, 142: 111533.
[18]
de Campos R, Rackus D G, Shih R, et al. “plug-n-play” sensing with digital microfluidics. Analytical Chemistry, 2019, 91(3): 2506-2515.
[19]
Rawson T M, Gowers S A N, Freeman D M E, et al. Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers. The Lancet Digital Health, 2019, 1(7): e335-e343.
[20]
Lei L J, Zhao C, Zhu X F, et al. Nonenzymatic electrochemical sensor for wearable interstitial fluid glucose monitoring. Electroanalysis, 2022, 34(2): 415-422.
[21]
Sun T, Tsaava T, Peragine J, et al. Flexible IrOx neural electrode for mouse vagus nerve stimulation. Acta Biomaterialia, 2023, 159: 394-409.
[22]
Zhou Y, Liu B Z, Lei Y M, et al. Acupuncture needle-based transistor neuroprobe for in vivo monitoring of neurotransmitter. Small, 2022, 18(52): e2204142.
[23]
Li J X, Liu Y X, Yuan L, et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature, 2022, 606: 94-101.
[24]
Wang L Y, Xie S L, Wang Z Y, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nature Biomedical Engineering, 2020, 4: 159-171.
[25]
Zhang D H, Chen Q, Shi C, et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Advanced Functional Materials, 2021, 31(6): 2007226.
[26]
Wynn T A, Ramalingam T R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine, 2012, 18: 1028-1040.
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.
[27]
Anderson J M, Rodriguez A, Chang D T. Foreign body reaction to biomaterials. Seminars in Immunology, 2008, 20(2): 86-100.
The foreign body reaction composed of macrophages and foreign body giant cells is the end-stage response of the inflammatory and wound healing responses following implantation of a medical device, prosthesis, or biomaterial. A brief, focused overview of events leading to the foreign body reaction is presented. The major focus of this review is on factors that modulate the interaction of macrophages and foreign body giant cells on synthetic surfaces where the chemical, physical, and morphological characteristics of the synthetic surface are considered to play a role in modulating cellular events. These events in the foreign body reaction include protein adsorption, monocyte/macrophage adhesion, macrophage fusion to form foreign body giant cells, consequences of the foreign body response on biomaterials, and cross-talk between macrophages/foreign body giant cells and inflammatory/wound healing cells. Biomaterial surface properties play an important role in modulating the foreign body reaction in the first two to four weeks following implantation of a medical device, even though the foreign body reaction at the tissue/material interface is present for the in vivo lifetime of the medical device. An understanding of the foreign body reaction is important as the foreign body reaction may impact the biocompatibility (safety) of the medical device, prosthesis, or implanted biomaterial and may significantly impact short- and long-term tissue responses with tissue-engineered constructs containing proteins, cells, and other biological components for use in tissue engineering and regenerative medicine. Our perspective has been on the inflammatory and wound healing response to implanted materials, devices, and tissue-engineered constructs. The incorporation of biological components of allogeneic or xenogeneic origin as well as stem cells into tissue-engineered or regenerative approaches opens up a myriad of other challenges. An in depth understanding of how the immune system interacts with these cells and how biomaterials or tissue-engineered constructs influence these interactions may prove pivotal to the safety, biocompatibility, and function of the device or system under consideration.
[28]
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chemical Society Reviews, 2020, 49(21): 7671-7709.
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
[29]
Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technology & Therapeutics, 2016, 18(Suppl 2): S3-S13.
[30]
Gant R M, Hou Y P, Grunlan M A, et al. Development of a self-cleaning sensor membrane for implantable biosensors. Journal of Biomedical Materials Research Part A, 2009, 90(3): 695-701.
Fibrous tissue encapsulation may slow the diffusion of the target analyte to an implanted sensor and compromise the optical signal. Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels are thermoresponsive, exhibiting temperature-modulated swelling behavior that could be used to prevent biofouling. Unfortunately, PNIPAAm hydrogels are limited by poor mechanical strength. In this study, a unique thermoresponsive nanocomposite hydrogel was developed to create a mechanically robust self-cleaning sensor membrane for implantable biosensors. This hydrogel was prepared by the photochemical cure of an aqueous solution of NIPAAm and copoly(dimethylsiloxane/methylvinylsiloxane) colloidal nanoparticles ( approximately 219 nm). At temperatures above the volume phase transition temperature (VPTT) of approximately 33-34 degrees C, the hydrogel deswells and becomes hydrophobic, whereas lowering the temperature below the VPTT causes the hydrogel to swell and become hydrophilic. The potential of this material to minimize biofouling via temperature-modulation while maintaining sensor viability was investigated using glucose as a target analyte. PNIPAAm composite hydrogels with and without poration were compared to a pure PNIPAAm hydrogel and a nonthermoresponsive poly(ethylene glycol) (PEG) hydrogel. Poration led to a substantial increase in diffusion. Cycling the temperature of the nanocomposite hydrogels around the VPTT caused significant detachment of GFP-H2B 3T3 fibroblast cells.
[31]
Hetrick E M, Schoenfisch M H. Reducing implant-related infections: active release strategies. Chemical Society Reviews, 2006, 35(9): 780-789.
Despite sterilization and aseptic procedures, bacterial infection remains a major impediment to the utility of medical implants including catheters, artificial prosthetics, and subcutaneous sensors. Indwelling devices are responsible for over half of all nosocomial infections, with an estimate of 1 million cases per year (2004) in the United States alone. Device-associated infections are the result of bacterial adhesion and subsequent biofilm formation at the implantation site. Although useful for relieving associated systemic infections, conventional antibiotic therapies remain ineffective against biofilms. Unfortunately, the lack of a suitable treatment often leaves extraction of the contaminated device as the only viable option for eliminating the biofilm. Much research has focused on developing polymers that resist bacterial adhesion for use as medical device coatings. This tutorial review focuses on coatings that release antimicrobial agents (i.e., active release strategies) for reducing the incidence of implant-associated infection. Following a brief introduction to bacteria, biofilms, and infection, the development and study of coatings that slowly release antimicrobial agents such as antibiotics, silver ions, antibodies, and nitric oxide are covered. The success and limitations of these strategies are highlighted.
[32]
Zhu D S, Hou J L, Qian M, et al. Nitrate-functionalized patch confers cardioprotection and improves heart repair after myocardial infarction via local nitric oxide delivery. Nature Communications, 2021, 12: 4501.
Nitric oxide (NO) is a short-lived signaling molecule that plays a pivotal role in cardiovascular system. Organic nitrates represent a class of NO-donating drugs for treating coronary artery diseases, acting through the vasodilation of systemic vasculature that often leads to adverse effects. Herein, we design a nitrate-functionalized patch, wherein the nitrate pharmacological functional groups are covalently bound to biodegradable polymers, thus transforming small-molecule drugs into therapeutic biomaterials. When implanted onto the myocardium, the patch releases NO locally through a stepwise biotransformation, and NO generation is remarkably enhanced in infarcted myocardium because of the ischemic microenvironment, which gives rise to mitochondrial-targeted cardioprotection as well as enhanced cardiac repair. The therapeutic efficacy is further confirmed in a clinically relevant porcine model of myocardial infarction. All these results support the translational potential of this functional patch for treating ischemic heart disease by therapeutic mechanisms different from conventional organic nitrate drugs.© 2021. The Author(s).
[33]
Patel A N, Unwin P R, MacPherson J V. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Physical Chemistry Chemical Physics, 2013, 15(41): 18085-18092.
The change in surface morphology of oxygen-terminated polycrystalline boron doped diamond (pBDD) during electrochemical oxidation of the neurotransmitter serotonin (5-HT), resulting in a corresponding deterioration of the current signal, is investigated for the first time using both high resolution ex situ and in situ microscopy under a range of different electrochemical conditions. In situ electrochemical-atomic force microscopy (EC-AFM) reveals the formation of a granular film over the surface, which grows faster at higher-doped regions of the electrode surface and increases in thickness with repetitive potential cycles. The film properties were investigated using both cyclic voltammetry, with a range of redox species varying in charge, and conducting-AFM. These studies reveal the film to be positively charged and electrically insulating. The extent to which the film forms during 5-HT oxidation could be significantly minimised using different electrochemical procedures, as verified by voltammetry and in situ EC-AFM. Finally, even after extensive film formation, the original current signal could be recovered simply by leaving the electrode at open circuit potential for a short period of time, highlighting the suitability of BDD electrodes for neurotransmitter detection.
[34]
Sadok I, Tyszczuk-Rotko K, Mroczka R, et al. Simultaneous voltammetric analysis of tryptophan and kynurenine in culture medium from human cancer cells. Talanta, 2020, 209: 120574.
[35]
Zhu F H, Xue Y F, Ji W L, et al. Galvanic redox potentiometry for fouling-free and stable serotonin sensing in a living animal brain. Angewandte Chemie (International Ed in English), 2023, 62(11): e202212458.
[36]
Ortega L, Llorella A, Esquivel J P, et al. Self-powered smart patch for sweat conductivity monitoring. Microsystems & Nanoengineering, 2019, 5: 3.
[37]
Emaminejad S, Gao W, Wu E, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4625-4630.
[38]
Wang R, Zhai Q F, An T C, et al. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta, 2021, 222: 121484.
[39]
Imani S, Bandodkar A J, Vinu Mohan A M, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nature Communications, 2016, 7: 11650.
Flexible, wearable sensing devices can yield important information about the underlying physiology of a human subject for applications in real-time health and fitness monitoring. Despite significant progress in the fabrication of flexible biosensors that naturally comply with the epidermis, most designs measure only a small number of physical or electrophysiological parameters, and neglect the rich chemical information available from biomarkers. Here, we introduce a skin-worn wearable hybrid sensing system that offers simultaneous real-time monitoring of a biochemical (lactate) and an electrophysiological signal (electrocardiogram), for more comprehensive fitness monitoring than from physical or electrophysiological sensors alone. The two sensing modalities, comprising a three-electrode amperometric lactate biosensor and a bipolar electrocardiogram sensor, are co-fabricated on a flexible substrate and mounted on the skin. Human experiments reveal that physiochemistry and electrophysiology can be measured simultaneously with negligible cross-talk, enabling a new class of hybrid sensing devices.
[40]
Lee H, Song C, Hong Y S, et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science Advances, 2017, 3(3): e1601314.
[41]
Gao W, Nyein H Y Y, Shahpar Z, et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sensors, 2016, 1(7): 866-874.
[42]
于文泽, 李秋瑾, 巩继贤, 等. 可穿戴汗液传感器的研究与应用进展. 分析化学, 2022, 50(11): 1723-1732.
Yu W Z, Li Q J, Gong J X, et al. Research progress of wearable microfluidic device for sweat sensing and monitoring. Chinese Journal of Analytical Chemistry, 2022, 50(11): 1723-1732.
[43]
Tu J B, Min J H, Song Y, et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nature Biomedical Engineering, 2023, 7: 1293-1306.
The quantification of protein biomarkers in blood at picomolar-level sensitivity requires labour-intensive incubation and washing steps. Sensing proteins in sweat, which would allow for point-of-care monitoring, is hindered by the typically large interpersonal and intrapersonal variations in its composition. Here we report the design and performance of a wearable and wireless patch for the real-time electrochemical detection of the inflammatory biomarker C-reactive (CRP) protein in sweat. The device integrates iontophoretic sweat extraction, microfluidic channels for sweat sampling and for reagent routing and replacement, and a graphene-based sensor array for quantifying CRP (via an electrode functionalized with anti-CRP capture antibodies-conjugated gold nanoparticles), ionic strength, pH and temperature for the real-time calibration of the CRP sensor. In patients with chronic obstructive pulmonary disease, with active or past infections or who had heart failure, the elevated concentrations of CRP measured via the patch correlated well with the protein's levels in serum. Wearable biosensors for the real-time sensitive analysis of inflammatory proteins in sweat may facilitate the management of chronic diseases.© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
[44]
Sempionatto J R, Lin M Y, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nature Biomedical Engineering, 2021, 5: 737-748.
Monitoring the effects of daily activities on the physiological responses of the body calls for wearable devices that can simultaneously track metabolic and haemodynamic parameters. Here we describe a non-invasive skin-worn device for the simultaneous monitoring of blood pressure and heart rate via ultrasonic transducers and of multiple biomarkers via electrochemical sensors. We optimized the integrated device so that it provides mechanical resiliency and flexibility while conforming to curved skin surfaces, and to ensure reliable sensing of glucose in interstitial fluid and of lactate, caffeine and alcohol in sweat, without crosstalk between the individual sensors. In human volunteers, the device captured physiological effects of food intake and exercise, in particular the production of glucose after food digestion, the consumption of glucose via glycolysis, and increases in blood pressure and heart rate compensating for oxygen depletion and lactate generation. Continuous and simultaneous acoustic and electrochemical sensing via integrated wearable devices should enrich the understanding of the body's response to daily activities, and could facilitate the early prediction of abnormal physiological changes.© 2021. The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature.
[45]
Sun H Y, Zheng Y B, Shi G Y, et al. Wearable clinic: from microneedle-based sensors to next-generation healthcare platforms. Small, 2023, 19(51): e2207539.
[46]
He W Y, Wang C Y, Wang H M, et al. Integrated textile sensor patch for real-time and multiplex sweat analysis. Science Advances, 2019, 5(11): eaax0649.
[47]
Gao W, Emaminejad S, Nyein H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529: 509-514.
[48]
Gil B, Anastasova S, Yang G Z. A smart wireless ear-worn device for cardiovascular and sweat parameter monitoring during physical exercise: design and performance results. Sensors, 2019, 19(7): 1616.
[49]
Hong Y J, Lee H, Kim J, et al. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/ post-exercise glucose levels. Advanced Functional Materials, 2018, 28(47): 1805754.
[50]
Song Y, Min J H, Yu Y, et al. Wireless battery-free wearable sweat sensor powered by human motion. Science Advances, 2020, 6(40): eaay9842.
[51]
Yin L, Cao M Z, Kim K N, et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nature Electronics, 2022, 5: 694-705.
[52]
Sun M M, Gu Y N, Pei X Y, et al. A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy, 2021, 86: 106061.
[53]
Falk M, Andoralov V, Silow M, et al. Miniature biofuel cell as a potential power source for glucose-sensing contact lenses. Analytical Chemistry, 2013, 85(13): 6342-6348.
A microscale membrane-less biofuel cell, capable of generating electrical energy from human lachrymal liquid, was developed by utilizing the ascorbate and oxygen naturally present in tears as fuel and oxidant. The biodevice is based on three-dimensional nanostructured gold electrodes covered with abiotic (conductive organic complex) and biological (redox enzyme) materials functioning as efficient anodic and cathodic catalysts, respectively. Three-dimensional nanostructured electrodes were fabricated by modifying 100 μm gold wires with 17 nm gold nanoparticles, which were further modified with tetrathiafulvalene-tetracyanoquinodimethane conducting complex to create the anode and with Myrothecium verrucaria bilirubin oxidase to create the biocathode. When operated in human tears, the biodevice exhibited the following characteristics: an open circuit voltage of 0.54 V, a maximal power density of 3.1 μW cm(-2) at 0.25 V and 0.72 μW cm(-2) at 0.4 V, with a stable current density output of over 0.55 μA cm(-2) at 0.4 V for 6 h of continuous operation. These findings support our proposition that an ascorbate/oxygen biofuel cell could be a suitable power source for glucose-sensing contact lenses to be used for continuous health monitoring by diabetes patients.
[54]
Shirzaei Sani E, Xu C H, Wang C R, et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Science Advances, 2023, 9(12): eadf7388.

基金

* 国家自然科学基金(82302585)
国家自然科学基金(82272277)

PDF(894 KB)

2158

Accesses

0

Citation

Detail

段落导航
相关文章

/