Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (4): 88-101    DOI: 10.13523/j.cb.2310023
综述     
维生素B6的生理活性与合成的研究进展*
周楚然,王美玲,黄建忠,柯崇榕**(),杨欣伟**()
福建师范大学生命科学学院 工业微生物发酵技术国家地方联合工程研究中心 工业微生物教育部工程中心 福州 350108
Advances in Physiological Activities and Synthesis of Vitamin B6
ZHOU Churan,WANG Meiling,HUANG Jianzhong,KE Chongrong**(),YANG Xinwei**()
Engineering Research Center of Industrial Microbiology, Ministry of Education, National and Local United, Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
 全文: PDF(1906 KB)   HTML
摘要:

维生素B6(vitamin B6,VB6)属于水溶性维生素,由六种可相互转换的吡啶类化合物组成:吡哆醇(pyridoxine,PN)、吡哆醛(pyridoxal,PL)、吡哆胺(pyridoxamine,PM)、磷酸吡哆醛(pyridoxal 5'-phosphate,PLP)、磷酸吡哆醇(pyridoxine 5'-phosphate,PNP)和磷酸吡哆胺(pyridoxamine 5'-phosphate,PMP)。其中,PLP是VB6的生物活性形式,为180多种酶的辅因子。VB6具有抗炎、抗氧化、神经调节和抗肿瘤等多种生理功能,是重要的营养化学品。吡哆醇盐酸盐(PN·HCl)利用昂贵且有毒的化学物质通过噁唑法完全合成,是VB6目前最常见的商业形式。与化学合成相比,VB6的生物合成在无毒性、高纯度和可持续性等方面具有显著优势。目前利用微生物细胞工厂高水平生产VB6的尝试还处于起步阶段,随着对VB6生物合成的代谢途径、关键酶和稳态调控的深入研究,生物合成的VB6产量将会逐步提高,有望从根本上取代化学合成。对VB6的生理功能、化学合成和生物合成进行总结,重点介绍生物合成中涉及的代谢途径与稳态调控,提出开发VB6高产菌株的相关策略,以期为VB6的高效生物合成提供参考。

关键词: 维生素B6磷酸吡哆醛化学合成生物合成稳态调控    
Abstract:

Vitamin B6 (VB6) is a water-soluble vitamin, composed of six transformable pyridine compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP). PLP is the bioactive form of VB6, and is the cofactor of over 180 enzymes. VB6 is an important dietary chemical with several physiological functions such as anti-inflammatory, antioxidant, neuromodulatory, and anti-tumor. Pyridoxine hydrochloride is currently the most common commercial form of VB6, which is fully synthesized using expensive and toxic chemicals via the oxazole method. Compared with chemical synthesis, the biosynthesis of VB6 has significant advantages in terms of non-toxicity, high purity, and sustainability, and has great potential for application. Although high-level production of VB6 by microbial cell factories is still in its infancy, in-depth research on the metabolic pathways, key enzymes and homeostatic regulation of VB6 biosynthesis will gradually increase the yield of VB6, and it is expected to fundamentally replace chemical synthesis. This article mainly reviews the physiological functions, chemical synthesis, and biosynthesis of VB6, focusing on the metabolic pathways and homeostatic regulation involved in biosynthesis. It proposes relevant strategies for the development of high-yielding VB6 strains, with the aim of exploring the potential of VB6 biosynthesis and providing a reference for the efficient biosynthesis of VB6.

Key words: Vitamin B6    Pyridoxal phosphate    Chemical synthesis    Biosynthesis    Control of homeostasis
收稿日期: 2023-10-18 出版日期: 2024-04-30
ZTFLH:  Q819  
基金资助: * 福建省自然科学基金(2021J01170);福建省自然科学基金(2021J01172);中国博士后科学基金(2020M670495)
通讯作者: ** 电子信箱:kechr@fjnu.edu.cn;npkace@fjnu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周楚然
王美玲
黄建忠
柯崇榕
杨欣伟

引用本文:

周楚然, 王美玲, 黄建忠, 柯崇榕, 杨欣伟. 维生素B6的生理活性与合成的研究进展*[J]. 中国生物工程杂志, 2024, 44(4): 88-101.

ZHOU Churan, WANG Meiling, HUANG Jianzhong, KE Chongrong, YANG Xinwei. Advances in Physiological Activities and Synthesis of Vitamin B6. China Biotechnology, 2024, 44(4): 88-101.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2310023        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I4/88

图1  维生素B6六种形式分子结构式
图2  维生素B6的生理功能
图3  VB6的化学合成途径 A:Firestone等(左)及周后元等(右)以噁唑法合成PN·HCl线路图 B:吡啶酮法合成PN·HCl线路图 C:炔基醚法合成PN·HCl线路图
Substrates Time/year Product yield/% References
Oxalic acid and Alanine 1994 56 [41]
4-Methyl-5-oxyethyloxazole and 4,7-dihydro-2-propyl-1,3-dioxepin 2012 81.6 [36]
4-Methyl-5-ethoxy-oxazole 2013 86.05 [43]
Cis-2-Butene-1,4-diol and cyclohexane 2019 98.3 [45]
2-Cyano-2-Cibutene-1,4-diol 2020 86.4 [49]
4-Ethoxyoxazole and Isopropyl dioxane 2021 83.2 [50]
4-Methyl-5-ethoxy-2-oxazole 2022 99.52 [48]
表1  噁唑法生产PN·HCl的比较
图4  VB6的生物合成途径 A:DXP依赖途径 B:DXP非依赖途径 C:挽救途径
图5  潜在新途径合成VB6[4]
Organism Medium Vitamer Titer/
(mg·L-1)
Time/h References
Klebsiella strain MM, CAA PM 2 60 [81]
Saccharomyces marxianus (NRRL-Y-1550) MM PL,PN 2 167 [82]
Achromobacter cycloclastes A.M.S.6201 MM+CAA Vitamin B6 3~4 36~42 [83]
Vibrio strain M-31 Peptone, glycerol, salts Vitamin B6 5 100 [84]
Flavobacterium strain 238-7 Peptone, glycerol, salts, Mn Vitamin B6 18 70 [84]
Bacillus strain MM Vitamin B6 2~5 96 [85]
Saccharomyces microsporn NRRL Y-1550 MM PN 3.3 168 [86]
Pichia guilliermondii Wickerham NK-2 strain MM phosphate, yeast extract et. Vitamin B6 25 168 [87]
S. meliloti IFO 14782 MM,sulfates, yeast extract Vitamin B6 84
(PN为79)
168 [72]
表2  天然菌株合成VB6
Organism Genotype Vitamer Titer/
(mg·L-1)
Time/h References
Sinorhizobium meliloti IFO 14782 EcpdxA, EcpdxJ PN 1.74 2 [88]
Escherichia coli BspdxS/T PMP,PM,PL and PN 61 48 [79]
Escherichia coli Ecepd, EcpdxJ, Ecdxs PN 78.5 31 [78]
Sinorhizobium meliloti IFO 14782 Ecepd, SmpdxJ PN 1 300 168 [73]
Sinorhizobium meliloti IFO 14782 SmpdxJ PN 362 168 [89]
Sinorhizobium meliloti IFO 14782 SmpdxP, EcpdxJ PN 149 216 [74]
Bacillus subtilis EcpdxA, SmpdxJ PN 54 72 [76]
Bacillus subtilis EcpdxA, SmpdxJ PN 65 72 [90]
Escherichia coli EcpdxJ, Eczwf, Ecdxs PLP 2 320 12 [80]
Escherichia coli EcpdxA, EcpdxJ, Smdxs, Gniepd,
EcpdxB, SmpdxP
PN 1 400 48 [54]
表3  工程菌株生产VB6
[1] 刘秀萍, 杨郁, 张国梅, 等. 竞争荧光包合法研究维生素B6与β-环糊精及其衍生物的包合性能. 分析化学, 2003, 31(8): 996-999.
Liu X P, Yang Y, Zhang G M, et al. Study on the inclusion interaction of vitamin B6 and β-cyclodextrin and its derivatives by competitive fluorescence inclusion method. Chinese Journal of Analytical Chemistry, 2003, 31(8): 996-999.
[2] Ueland P M, McCann A, Midttun Ø, et al. Inflammation, vitamin B6 and related pathways. Molecular Aspects of Medicine, 2017, 53: 10-27.
doi: S0098-2997(16)30039-5 pmid: 27593095
[3] Denise R, Babor J, Gerlt J A, et al. Pyridoxal 5'-phosphate synthesis and salvage in Bacteria and Archaea: predicting pathway variant distributions and holes. Microbial Genomics, 2023, 9(2): mgen000926.
[4] Richts B, Commichau F M. Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis. Applied Microbiology and Biotechnology, 2021, 105(6): 2297-2305.
doi: 10.1007/s00253-021-11199-w pmid: 33665688
[5] Rosenberg J, Ischebeck T, Commichau F M. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnology Advances, 2017, 35(1): 31-40.
doi: S0734-9750(16)30150-1 pmid: 27890703
[6] Fitzpatrick T B, Moccand C, Roux C. Vitamin B6 biosynthesis: charting the mechanistic landscape. Chembiochem, 2010, 11(9): 1185-1193.
doi: 10.1002/cbic.201000084 pmid: 20397182
[7] Reddy P. Preventing vitamin B6-related neurotoxicity. American Journal of Therapeutics, 2022, 29(6): e637-e643.
doi: 10.1097/MJT.0000000000001460 pmid: 36608063
[8] Windebank A J. Neurotoxicity of pyridoxine analogs is related to coenzyme structure. Neurochemical Pathology, 1985, 3(3): 159-167.
pmid: 4094726
[9] Merrill A H Jr, Henderson J M. Vitamin B6 metabolism by human liver. Annals of the New York Academy of Sciences, 1990, 585: 110-117.
[10] Bird R P. The emerging role of vitamin B6 in inflammation and carcinogenesis. Advances in Food and Nutrition Research, 2018, 83: 151-194.
[11] Van den Eynde M D G, Scheijen J L J M, Stehouwer C D A, et al. Quantification of the B6 vitamers in human plasma and urine in a study with pyridoxamine as an oral supplement; pyridoxamine as an alternative for pyridoxine. Clinical Nutrition, 2021, 40(7): 4624-4632.
doi: 10.1016/j.clnu.2021.05.028
[12] Matxain J M, Padro D, Ristilä M, et al. Evidence of high *OH radical quenching efficiency by vitamin B6. The Journal of Physical Chemistry B, 2009, 113(29): 9629-9632.
doi: 10.1021/jp903023c
[13] 欧阳经鑫, 李秋粉, 周华, 等. 维生素B6的生物学功能及其抗炎作用机制. 动物营养学报, 2023, 35(5): 2738-2747.
doi: 10.12418/CJAN2023.256
Ouyang J X, Li Q F, Zhou H, et al. Biological function of vitamin B6 and its anti-inflammatory mechanism. Chinese Journal of Animal Nutrition, 2023, 35(5): 2738-2747.
doi: 10.12418/CJAN2023.256
[14] Suidasari S, Stautemas J, Uragami S, et al. Carnosine content in skeletal muscle is dependent on vitamin B6 status in rats. Frontiers in Nutrition, 2015, 2: 39.
doi: 10.3389/fnut.2015.00039 pmid: 26835452
[15] 莫颖芬, 王丽娜. β-丙氨酸及肌肽对动物采食影响的研究进展. 饲料工业, 2023, 44(12): 25-29.
Mo Y F, Wang L N. Research progress on the effects of β-alanine and carnosine on animal feed intake. Feed Industry, 2023, 44(12): 25-29.
[16] Zhang P P, Tsuchiya K, Kinoshita T, et al. Vitamin B6 prevents IL-1β protein production by inhibiting NLRP 3 inflammasome activation. Journal of Biological Chemistry, 2016, 291(47): 24517-24527.
doi: 10.1074/jbc.M116.743815
[17] 马雪兴, 刘王明, 王毓明, 等. 叶酸、维生素B6、维生素B12对大鼠同型半胱氨酸水平及动脉损伤的影响. 中国循环杂志, 2000, 15 (6): 375-377.
Ma X X, Liu W M, Wang Y M, et al. Effects of folate,vitamin B6 and vitamin B12 on the levels of plasma homocysteine and arterial lesions in rats. Chinese Circulation Journal, 2000, 15(6): 375-377.
[18] González E, Danehower D, Daub M E. Vitamer levels, stress response, enzyme activity, and gene regulation of Arabidopsis lines mutant in the pyridoxine/pyridoxamine 5'-phosphate oxidase (PDX3) and the pyridoxal kinase (SOS4) genes involved in the vitamin B6 salvage pathway. Plant Physiology, 2007, 145(3): 985-996.
doi: 10.1104/pp.107.105189 pmid: 17873088
[19] Charalampidis P, Teperikidis E, Boulmpou A, et al. Homocysteine as a predictor of paroxysmal atrial fibrillation-related events: a scoping review of the literature. Diagnostics, 2022, 12(9): 2192.
doi: 10.3390/diagnostics12092192
[20] Zhang B Y, Dong H Y, Xu Y, et al. Associations of dietary folate, vitamin B6 and B12 intake with cardiovascular outcomes in 115664 participants: a large UK population-based cohort. European Journal of Clinical Nutrition, 2023, 77(3): 299-307.
doi: 10.1038/s41430-022-01206-2
[21] Ishihara J, Iso H, Inoue M, et al. Intake of folate, vitamin B6 and vitamin B12 and the risk of CHD: the Japan Public Health Center-based prospective study cohort I. Journal of the American College of Nutrition, 2008, 27(1): 127-136.
pmid: 18460491
[22] 刘晴浩, 李陈曦, 包心茹, 等. 芳香族氨基酸脱羧酶研究进展. 中国生物工程杂志, 2023, 43(9): 105-112.
Liu Q H, Li C X, Bao X R, et al. Advances in aromatic L-amino acid decarboxylases. China Biotechnology, 2023, 43(9): 105-112.
[23] Okuda T, Sumiya T, Iwai N, et al. Pyridoxine 5'-phosphate oxidase is a candidate gene responsible for hypertension in Dahl-S rats. Biochemical and Biophysical Research Communications, 2004, 313(3): 647-653.
pmid: 14697241
[24] Mascolo E, Vernì F. Vitamin B6 and diabetes: relationship and molecular mechanisms. International Journal of Molecular Sciences, 2020, 21(10): 3669.
doi: 10.3390/ijms21103669
[25] Booth A A, Khalifah R G, Todd P, et al. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). Novel inhibition of post-Amadori glycation pathways. The Journal of Biological Chemistry, 1997, 272(9): 5430-5437.
doi: 10.1074/jbc.272.9.5430
[26] Mulay P, Chen C, Krishna V. Enzyme-independent catabolism of cysteine with pyridoxal-5'-phosphate. Scientific Reports, 2023, 13(1): 312.
doi: 10.1038/s41598-022-26966-6 pmid: 36609609
[27] Taniguchi S, Kang L, Kimura T, et al. Hydrogen sulphide protects mouse pancreatic β-cells from cell death induced by oxidative stress, but not by endoplasmic reticulum stress. British Journal Pharmacology, 2011, 162(5): 1171-1178.
doi: 10.1111/bph.2011.162.issue-5
[28] Jiang S. Vitamin B6 fuels acute myeloid leukemia growth. Trends in Cancer, 2020, 6(7): 536-537.
doi: 10.1016/j.trecan.2020.03.005
[29] Wei D H, Mao Q Q. Vitamin B6, vitamin B12 and methionine and risk of pancreatic cancer: a meta-analysis. Nutrition Journal, 2020, 19(1): 111.
doi: 10.1186/s12937-020-00628-7
[30] DiSorbo D M, Nathanson L. High-dose pyridoxal supplemented culture medium inhibits the growth of a human malignant melanoma cell line. Nutrition and Cancer, 1983, 5(1): 10-15.
doi: 10.1080/01635588309513773
[31] 单永治, 赵国光, 樊晓彤, 等. 小儿难治性癫痫的手术治疗及病理结果分析. 中华神经外科杂志, 2014, 30(9): 921-924.
Shan Y Z, Zhao G G, Fan X T, et al. Clinicopathologic features and surgery treatment of intractable epilepsy in childhood. Chinese Journal of Neurosurgery, 2014, 30(9): 921-924.
[32] Berger M, Gray J A, Roth B L. The expanded biology of serotonin. Annual Review of Medicine, 2009, 60: 355-366.
doi: 10.1146/annurev.med.60.042307.110802 pmid: 19630576
[33] Belelli D, Harrison N L, Maguire J, et al. Extrasynaptic GABAA receptors: form, pharmacology, and function. The Journal of Neuroscience, 2009, 29(41): 12757-12763.
doi: 10.1523/JNEUROSCI.3340-09.2009
[34] Chow C K, Luk H M, Wong S N. KCNQ2 encephalopathy and responsiveness to pyridoxal-5'-phosphate. Journal of Pediatric Genetics, 2023, 12(1): 90-94.
doi: 10.1055/s-0040-1721384 pmid: 36684546
[35] Huang S K, Lu C W, Lin T Y, et al. Neuroprotective role of the B vitamins in the modulation of the central glutamatergic neurotransmission. CNS & Neurological Disorders Drug Targets, 2022, 21(4): 292-301.
[36] 范卫东, 章根宝, 徐勇智, 等. 维生素B6的合成工艺改进. 广州化工, 2012, 40(17): 46-47.
Fan W D, Zhang G B, Xu Y Z, et al. Improved preparation of vitamin B6. Guangzhou Chemical Industry, 2012, 40(17): 46-47.
[37] 徐勇智, 范卫东, 党登峰, 等. 维生素B6的合成研究进展. 广州化工, 2012, 40(12): 50-51, 62.
Xu Y Z, Fan W D, Dang D F, et al. Process in synthesis of vitamin B6. Guangzhou Chemical Industry, 2012, 40(12): 50-51, 62.
[38] Harris S A, Folkers K. Synthesis of vitamin B6. Journal of the American Chemical Society, 1939, 61(5): 1245-1247.
doi: 10.1021/ja01874a069
[39] Firestone R A, Harris E E, Reuter W. Synthesis of pyridozine by diels-alder reactions with 4-methyl-5-alkoxy oxazoles. Tetrahedron, 1967, 23(2): 943-955.
doi: 10.1016/0040-4020(67)85043-9
[40] 刘淑贞, 牟明先. 维生素B6新合成路线. 国外医药合成药生化药制剂分册, 1980(4): 1-6.
Liu S Z, Mou M X. A new synthetic route of vitamin B6. Foreign Medicine: Synthetic, Biochemical, and Pharmaceutical Products Division, 1980(4): 1-6.
[41] 周后元, 方资婷, 叶鼎彝, 等. 维生素B6噁唑法合成新工艺. 中国医药工业杂志, 1994, 25(9): 385-389.
Zhou H Y, Fang Z T, Ye D Y, et al. A new synthesis process of vitamin B6 oxazole. Chinese Journal of Pharmaceuticals, 1994, 25(9): 385-389.
[42] A·金德勒, T·莱策尔特, D·弗兰克, 等. 制备吡哆素或其酸加成盐的方法: 中国, CN200380107722.7. 2006-02-08[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAwMzgwMTA3NzIyLjcaCHpkcHc3amho.
A J, T L, D F, et al. Method for preparing pyridoxine or its acid addition salt: Chinese, CN200380107722.7. 2006-02-08[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAwMzgwMTA3NzIyLjcaCHpkcHc3amho.
[43] 刘德铭, 鲁向阳, 赵卫忠, 等. 一种维生素B6的连续制备方法: 中国, CN201310688260.8. 2015-06-17[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAxMzEwNjg4MjYwLjgaCHhtamE4eWk0.
Liu D M, Lu X Y, Zhao W Z, et al. A continuous preparation method for vitamin B6: Chinese, CN201310688260.8. 2015-06-17[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAxMzEwNjg4MjYwLjgaCHhtamE4eWk0.
[44] 戚聿新, 成鹏飞, 李新发, 等.一锅法制备维生素B6的方法: 中国, CN201210572781.2. 2013-04-24[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAxMjEwNTcyNzgxLjIaCGpicW40cWk3.
Qi Y X, Cheng P F, Li X F, et al. One pot method for preparing vitamin B6: Chinese, CN201210572781.2. 2013-04-24[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAxMjEwNTcyNzgxLjIaCGpicW40cWk3.
[45] 尹传奇, 宣良明, 冯权武, 等. 一种维生素B6的合成工艺: 中国, CN201910407552.7. 2019-09-20[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAxOTEwNDA3NTUyLjcaCGZjZGJ4ZDhp.
Yi C Q, Xuan L M, Feng Q W, et al. Synthesis process of vitamin B6: Chinese, CN201910407552.7. 2019-09-20[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAxOTEwNDA3NTUyLjcaCGZjZGJ4ZDhp.
[46] 范云鸽, 史作清, 路延龄, 等. 维生素B6树脂法脱色初探. 应用化学, 2000, 17(4): 456-458.
Fan Y G, Shi Z Q, Lu Y L, et al. Decolorizaton of vitamin B6 by adsorption resins. Chinese Journal of Applied Chemistry, 2000, 17(4): 456-458.
[47] 陈天豪, 李仁宝, 杨威. 维生素B6的合成工艺改进. 中国医药工业杂志, 2004, 35(1): 1-2.
Chen T H, Li R B, Yang W. Improved synthesis of vitamin B6. Chinese Journal of Pharmaceuticals, 2004, 35(1): 1-2.
[48] 李新发, 孔瑜, 王成威, 等. 一种高纯度的维生素B6的制备方法: 中国, CN202111567993.7. 2022-04-12[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAyMTExNTY3OTkzLjcaCHlkem51cWox.
Li X F, Kong Y, Wang C W, et al. A preparation method for high purity vitamin B6: Chinese, CN202111567993.7. 2022-04-12[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAyMTExNTY3OTkzLjcaCHlkem51cWox.
[49] 戚聿新, 李新发, 王涛, 等. 一种维生素B6的环保制备方法: 中国, CN201711213884.9. 2020-10-30[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESE0NOMjAxNzExMjEzODg0Ljlfc3EaCHlwazZrNmly.
Qi Y X, Li X F, Wang T, et al. An environmentally friendly preparation method for vitamin B6: Chinese, CN201711213884.9. 2020-10-30[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESE0NOMjAxNzExMjEzODg0Ljlfc3EaCHlwazZrNmly.
[50] 柳道晗, 杨家友, 王海, 等. 一种维生素B6的制备方法: 中国, CN202110010692.8. 2021-05-11[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAyMTEwMDEwNjkyLjgaCGdhOHp3NWRw.
Liu D H, Yang J Y, Wang H, et al. A preparation method for vitamin B6: Chinese, CN202110010692.8. 2021-05-11[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAyMTEwMDEwNjkyLjgaCGdhOHp3NWRw.
[51] Geiger R E, Lalonde M, Stoller H, et al. Kobalt-katalysiert cycloadditionen von alkinen und nitrilen zu pyridinen: ein neuer zugang zu pyridoxin (vitamin B6). Helvetica Chimica Acta, 1984, 67(5): 1274-1282.
doi: 10.1002/hlca.v67:5
[52] Parnell C A, Vollhardt K P C. The cobalt way to vitamin B6: regioselective construction of the tetrasubstituted pyridine nucleus by cobalt-catalyzed alkyne-nitrile cooligomerizations. Chemischer Informationsdienst, 1986, 41(24): 5791-5796.
[53] Werner B, Bonrath W, Barbara H, et al. Manufacture of vitamin B6: United States, US20040490196. 2004-12-02[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESDVVTMjAwNDA0OTAxOTYaCGpnOHZqcnpn.
[54] Liu L X, Li J L, Gai Y M, et al. Protein engineering and iterative multimodule optimization for vitamin B6 production in Escherichia coli. Nature Communications, 2023, 14(1): 5304.
doi: 10.1038/s41467-023-40928-0
[55] Mittenhuber G. Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. Journal of Molecular Microbiology and Biotechnology, 2001, 3(1): 1-20.
pmid: 11200221
[56] Cane D E, Du S C, Robinson J K, et al. Biosynthesis of vitamin B6: enzymatic conversion of 1-deoxy-d-xylulose-5-phosphate to pyridoxol phosphate. Journal of the American Chemical Society, 1999, 121(33): 7722-7723.
doi: 10.1021/ja9914947
[57] Laber B, Maurer W, Scharf S, et al. Vitamin B6 biosynthesis: formation of pyridoxine 5'-phosphate from 4-(phosphohydroxy)-L-threonine and 1-deoxy-D-xylulose-5-phosphate by PdxA and PdxJ protein. FEBS Letters, 1999, 449(1): 45-48.
pmid: 10225425
[58] Banks J, Cane D E. Biosynthesis of vitamin B6: direct identification of the product of the PdxA-catalyzed oxidation of 4-hydroxy-l-threonine-4-phosphate using electrospray ionization mass spectrometry. Bioorganic & Medicinal Chemistry Letters, 2004, 14(7): 1633-1636.
doi: 10.1016/j.bmcl.2004.01.065
[59] Fitzpatrick T B, Amrhein N, Kappes B, et al. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. The Biochemical Journal, 2007, 407(1): 1-13.
doi: 10.1042/BJ20070765
[60] Pogell B M. Enzymatic oxidation of pyridoxamine phosphate to pyridoxal phosphate in rabbit liver. Journal of Biological Chemistry, 1958, 232(2): 761-776.
pmid: 13549461
[61] Hanes J W, Burns K E, Hilmey D G, et al. Mechanistic studies on pyridoxal phosphate synthase: the reaction pathway leading to a chromophoric intermediate. Journal of the American Chemical Society, 2008, 130(10): 3043-3052.
doi: 10.1021/ja076604l pmid: 18271580
[62] Hanes J W, Keresztes I, Begley T P. 13C NMR snapshots of the complex reaction coordinate of pyridoxal phosphate synthase. Nature Chemical Biology, 2008, 4(7): 425-430.
doi: 10.1038/nchembio.93 pmid: 18516049
[63] Hanes J W, Keresztes I, Begley T P. Trapping of a chromophoric intermediate in the Pdx1-catalyzed biosynthesis of pyridoxal 5'-phosphate. Angewandte Chemie (International Ed in English), 2008, 47(11): 2102-2105.
doi: 10.1002/anie.v47:11
[64] Tramonti A, Nardella C, di Salvo M L, et al. Knowns and unknowns of vitamin B6 metabolism in Escherichia coli. EcoSal Plus, 2021, 9(2). DOI: 10.1128/ecosalplus.ESP-0004-2021.
doi: 10.1128/ecosalplus.ESP-0004-2021
[65] Rosenberg J, Yeak K C, Commichau F M. A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis. Environmental Microbiology, 2018, 20(1): 156-168.
doi: 10.1111/1462-2920.13950 pmid: 29027347
[66] Sachla A J, Helmann J D. A bacterial checkpoint protein for ribosome assembly moonlights as an essential metabolite-proofreading enzyme. Nature Communications, 2019, 10(1): 1526.
doi: 10.1038/s41467-019-09508-z pmid: 30948730
[67] Smirnov S V, Sokolov P M, Kodera T, et al. A novel family of bacterial dioxygenases that catalyse the hydroxylation of free L-amino acids. FEMS Microbiology Letters, 2012, 331(2): 97-104.
doi: 10.1111/j.1574-6968.2012.02558.x pmid: 22448874
[68] Thiaville J J, Flood J, Yurgel S, et al. Members of a novel kinase family (DUF1537) can recycle toxic intermediates into an essential metabolite. ACS Chemical Biology, 2016, 11(8): 2304-2311.
doi: 10.1021/acschembio.6b00279 pmid: 27294475
[69] Kim J, Kershner J P, Novikov Y, et al. Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5'-phosphate synthesis. Molecular Systems Biology, 2010, 6: 436.
doi: 10.1038/msb.2010.88
[70] Oberhardt M A, Zarecki R, Reshef L, et al. Systems-wide prediction of enzyme promiscuity reveals a new underground alternative route for pyridoxal 5'-phosphate production in E. coli. PLoS Computational Biology, 2016, 12(1): e1004705.
doi: 10.1371/journal.pcbi.1004705
[71] Keiko I, Tatsuo H, Masaaki T. Fermentative production of vitamin B6: Japanese, EP19960115336. 1998-04-29[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESDUVQMTk5NjAxMTUzMzYaCGlzcWlkdnlh.
[72] Tazoe M, Ichikawa K, Hoshino T. Production of vitamin B6 in Rhizobium. Bioscience, Biotechnology, and Biochemistry, 1999, 63(8): 1378-1382.
doi: 10.1271/bbb.63.1378 pmid: 27389503
[73] Tatsuo H, Keiko I, Yoshie N, et al. Microorganism and process for preparing vitamin B6: United States, US20050528881. 2006-06-15[2023-10-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESDVVTMjAwNTA1Mjg4ODEaCHpzNnZtc2sz.
[74] Nagahashi Y, Tazoe M, Hoshino T. Cloning of the pyridoxine 5'-phosphate phosphatase gene (pdxP) and vitamin B6 production in pdxP recombinant Sinorhizobium meliloti. Bioscience, Biotechnology, and Biochemistry, 2008, 72(2): 421-427.
doi: 10.1271/bbb.70539
[75] Schallmey M, Singh A, Ward O P. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 2004, 50(1): 1-17.
doi: 10.1139/w03-076 pmid: 15052317
[76] Commichau F M, Alzinger A, Sande R, et al. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine. Metabolic Engineering, 2014, 25: 38-49.
doi: 10.1016/j.ymben.2014.06.007 pmid: 24972371
[77] Commichau F M, Alzinger A, Sande R, et al. Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-L-threonine to pyridoxine. Metabolic Engineering, 2015, 29: 196-207.
doi: S1096-7176(15)00033-6 pmid: 25777134
[78] Hoshino T, Ichikawa M, Tazoe Y. Reombinant microorganism for the production of vitamin B6: Japanese,EP1543139A1. 2005-06-22[2023-10-17]. https://www.freepatentsonline.com/y2006/0228785.html.
[79] Yocum R, Williams, Mark K, et al. Methods and organisms for production of B6 vitamers: United States, US20050508768. 2005-07-28[2023-10-17]. https://www.freepatentsonline.com/y2005/0164335.html.
[80] He M, Ma J, Chen Q W, et al. Engineered production of pyridoxal 5'-phosphate in Escherichia coli BL21. Preparative Biochemistry & Biotechnology, 2022, 52(5): 498-507.
[81] Suzue R, Haruna Y. Biosynthesis of vitamin B6. I. Incorporation of 14C-glycerol, aspartic acid and leucine into vitamin B6. The Journal of Vitaminology, 1970, 16(2): 154-159.
pmid: 5432878
[82] Pardini R S, Argoudelis C J. Biosynthesis of vitamin B6 by a yeast mutant. Journal of Bacteriology, 1968, 96(3): 672-677.
doi: 10.1128/jb.96.3.672-677.1968 pmid: 5732502
[83] Ishida M, Shimura K. Studies on the biosynthesis of vitamin B6. I. vitamin B6 production with a cell-suspension of Achromobacter cycloclastes. Agricultural and Biological Chemistry, 1970, 34(3): 327-334.
[84] Tani Y, Nakamatsu T, Izumi Y, et al. Studies on vitamin B6 metabolism in microorganisms part XI: extracellular formation of vitamin B6 by marine and terrestrial microorganisms and its control. Agricultural and Biological Chemistry, 1972, 36: 189-197.
doi: 10.1271/bbb1961.36.189
[85] Pflug W, Lingens F. Vitamin B6 biosynthesis in Bacillus subtilis. Hoppe-Seyler’s Zeitschrift Fur Physiologische Chemie, 1978, 359(5): 559-570.
[86] Scherr G H. The directed isolation of mutants producing increased amounts of metabolites. Journal of Applied Bacteriology, 1962, 25(2): 187-194.
doi: 10.1111/jam.1962.25.issue-2
[87] Morikawa H, Kamikubo T. Utilization of hydrocarbons by microorganisms: (I) utilization of n-parffins and vitamin B_production by several kinds of bacteria. Journal of Fermentation Technology, 1969, 47: 470-477.
[88] Tazoe M, Ichikawa K, Hoshino T. Biosynthesis of vitamin B6 in Rhizobium: in vitro synthesis of pyridoxine from 1-deoxy-D-xylulose and 4-hydroxy-L-threonine. Bioscience, Biotechnology, and Biochemistry, 2002, 66(4): 934-936.
doi: 10.1271/bbb.66.934
[89] Hoshino T, Nagatani Y, Ichikawa K, et al. Process for producing vitamin B6: Japanese, US7371547B2. 2008-11-26[2023-10-17]. https://www.freepatentsonline.com/7371547.html.
[90] Ma W C, Cao W J, Zhang B W, et al. Engineering a pyridoxal 5'-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Scientific Reports, 2015, 5: 15630.
doi: 10.1038/srep15630
[91] Vermeersch J J, Christmann-Franck S, Karabashyan L V, et al. Pyridoxal 5'-phosphate inactivates DNA topoisomerase IB by modifying the lysine general acid. Nucleic Acids Research, 2004, 32(18): 5649-5657.
pmid: 15494452
[92] Barile A, Battista T, Fiorillo A, et al. Identification and characterization of the pyridoxal 5'-phosphate allosteric site in Escherichia coli pyridoxine 5'-phosphate oxidase. Journal of Biological Chemistry, 2021, 296: 100795.
doi: 10.1016/j.jbc.2021.100795
[93] Al Mughram M H, Ghatge M S, Kellogg G E, et al. Elucidating the interaction between pyridoxine 5'-phosphate oxidase and dopa decarboxylase: activation of B6-dependent enzyme. International Journal of Molecular Sciences, 2022, 24(1): 642.
doi: 10.3390/ijms24010642
[94] Prunetti L, El Yacoubi B, Schiavon C R, et al. Evidence that COG 0325 proteins are involved in PLP homeostasis. Microbiology, 2016, 162(4): 694-706.
doi: 10.1099/mic.0.000255
[95] Ito T. Role of the conserved pyridoxal 5'-phosphate-binding protein YggS/PLPBP in vitamin B6 and amino acid homeostasis. Bioscience, Biotechnology, and Biochemistry, 2022, 86(9): 1183-1191.
doi: 10.1093/bbb/zbac113
[96] Belitsky B R. Role of PdxR in the activation of vitamin B6 biosynthesis in Listeria monocytogenes. Molecular Microbiology, 2014, 92(5): 1113-1128.
doi: 10.1111/mmi.12618 pmid: 24730374
[97] di Salvo M L, Nogués I, Parroni A, et al. On the mechanism of Escherichia coli pyridoxal kinase inhibition by pyridoxal and pyridoxal 5'-phosphate. Biochimica et Biophysica Acta, 2015, 1854(9): 1160-1166.
[98] Ghatge M S, Contestabile R, di Salvo M L, et al. Pyridoxal 5'-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase. PLoS One, 2012, 7(7): e41680.
doi: 10.1371/journal.pone.0041680
[99] Safo M K, Musayev F N, di Salvo M L, et al. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: implications for the classification of pyridoxal kinases. Journal of Bacteriology, 2006, 188(12): 4542-4552.
doi: 10.1128/JB.00122-06
[100] 黄龙全, 张剑韵. 植物维生素B6从头合成与代谢转换研究进展. 西北植物学报, 2015, 35(10): 2124-2131.
Huang L Q, Zhang J Y. Review on the de novo synthesis and metabolic conversions of vitamin B6 in plants. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10): 2124-2131.
[101] Ullah N, Andaleeb H, Mudogo C N, et al. Solution structures and dynamic assembly of the 24-meric plasmodial Pdx1-Pdx2 complex. International Journal of Molecular Sciences, 2020, 21(17): 5971.
doi: 10.3390/ijms21175971
[102] Raschle T, Amrhein N, Fitzpatrick T B. On the two components of pyridoxal 5'-phosphate synthase from Bacillus subtilis. Journal of Biological Chemistry, 2005, 280(37): 32291-32300.
doi: 10.1074/jbc.M501356200 pmid: 16030023
[103] Babor J, Tramonti A, Nardella C, et al. 4'-Deoxypyridoxine disrupts vitamin B6 homeostasis in Escherichia coli K 12 through combined inhibition of cumulative B6 uptake and PLP-dependent enzyme activity. Microbiology, 2023, 169(4): 001319.
[1] 姜继鹏, 孙亚楠, 张晨晨, 郝漫, 李相勋, 刘夫锋, 王海宽, 路福平, 张会图. 非核糖体肽的生物合成研究进展*[J]. 中国生物工程杂志, 2023, 43(8): 86-99.
[2] 郑力铭, 王鹏超. 微生物合成四萜类化合物研究进展*[J]. 中国生物工程杂志, 2023, 43(10): 96-108.
[3] 李亚桐, 马媛媛, 汪振洋, 宋浩. 甜菊糖苷的应用及生物合成研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 104-114.
[4] 卞一凡,刘姝晗,张贝萌,张玉龙,李辛桐,王鹏超. 微生物合成2-苯乙醇研究进展*[J]. 中国生物工程杂志, 2022, 42(8): 128-136.
[5] 王荣香,宋佳,孙博,闫雪,张万忠,赵晨. 香豆素类化合物功能及生物合成研究进展*[J]. 中国生物工程杂志, 2022, 42(12): 79-90.
[6] 李然,闫晓光,李伟国,梁冬梅,财音青格乐,乔建军. 高效合成倍半萜酿酒酵母的构建策略*[J]. 中国生物工程杂志, 2022, 42(1/2): 14-25.
[7] 戢传富,王璐,苟敏,宋文枫,夏子渊,汤岳琴. 黄原胶生物合成及分子调控*[J]. 中国生物工程杂志, 2022, 42(1/2): 46-57.
[8] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[9] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[10] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[11] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[12] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[13] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[14] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[15] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.