Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (4): 102-111    DOI: 10.13523/j.cb.2309027
综述     
新型基因编辑技术加速盐藻表达系统的成熟和应用*
黄晓雯1,皇甫雨静1,姬聪浩1,代月优1,李姝璇1,冯书营1,2,3,**()
1 河南中医药大学医学院 郑州 450046
2 河南省中医药特医食品工程研究中心 郑州 450046
3 河南省药食同源中药工程研究中心 郑州 450046
Novel Gene Editing Technology Accelerates Maturation and Application of Dunaliella salina Expression Systems
HUANG Xiaowen1,HUANGFU Yujing1,JI Conghao1,DAI Yueyou1,LI Shuxuan1,FENG Shuying1,2,3,**()
1 Henan University of Chinese Medicine, Medical College, Zhengzhou 450046, China
2 Henan Engineering Research Center of Special Medical Food of Traditional Chinese Medicine, Zhengzhou 450046, China
3 Henan Engineering Research Center of Medicinal and Food Homologous Traditional Chinese Medicine, Zhengzhou 450046, China
 全文: PDF(887 KB)   HTML
摘要:

盐藻因具备低成本、易培养、便于转基因操作、可调控的转录和翻译等优点,已成为基因工程领域备受关注的新型表达系统。但盐藻表达系统存在低表达和不稳定遗传等技术瓶颈,严重限制了其应用。CRISPR/Cas系统凭借高稳定性、高靶点特异性、可编程性等优点,可作为助推盐藻表达系统改进和应用的重要工具,从而大幅提高盐藻表达系统重组蛋白、脂质积累和胡萝卜素等高附加值产物的产量。由于盐藻兼具原核细胞和真核细胞的双重特点,基因编辑存在较大的难度和限制性,因而必须不断提高基因编辑技术在盐藻中的精确性和编辑效率,以确保目标基因得到准确修饰。探讨盐藻表达系统的基因工程研究现状,包括盐藻转化方法、外源基因的表达和基因编辑的研究现状等,分析CRISPR/Cas编辑技术在盐藻中面临的主要挑战,提出未来的发展方向和增效策略,以期加速盐藻表达系统的成熟和应用。

关键词: 盐藻新型表达系统基因编辑CRISPR/Cas9系统    
Abstract:

Dunaliella salina (D. salina) has become a promising expression system in genetic engineering due to its low cost, easy cultivation, simple transgenic operation, and controllable transcription and translation characteristics. However, there are technical bottlenecks such as low expression and unstable inheritance in the D. salina expression system, which severely limit its application. With the advantages of high stability, the high target specificity and programmability, the CRISPR/Cas system can be used as an important tool to promote the improvement and application of the D. salina expression system, thereby greatly increasing the production of high value-added products such as recombinant proteins, lipid accumulation and carotene. Due to the dual characteristics of prokaryotic and eukaryotic cells, salt algae have greater difficulties and limitations in the gene editing process. Therefore, it is necessary to continuously improve the accuracy and editing efficiency of gene editing technology in D. salina to ensure that the target genes are accurately modified. On this basis, the advantages of genetic engineering of D. salina expression system were comprehensively reviewed, including the transformation methods, exogenous gene expression and the current research status of gene editing. Meanwhile, the main challenges of CRISPR/Cas editing technology in D. salina are highlighted, the future development direction and improvement strategy are proposed, and the application prospect of this technology is envisioned to accelerate the early maturation and popularization of D. salina expression system.

Key words: Dunaliella salina    Novel expression system    Gene editing    CRISPR/Cas9 system
收稿日期: 2023-09-22 出版日期: 2024-04-30
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(U1804112);河南省自然科学基金(232300421164);河南省高等学校重点科研项目计划基础研究专项(23ZX005)
通讯作者: ** 电子信箱:fsy@hactcm.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄晓雯
皇甫雨静
姬聪浩
代月优
李姝璇
冯书营

引用本文:

黄晓雯, 皇甫雨静, 姬聪浩, 代月优, 李姝璇, 冯书营. 新型基因编辑技术加速盐藻表达系统的成熟和应用*[J]. 中国生物工程杂志, 2024, 44(4): 102-111.

HUANG Xiaowen, HUANGFU Yujing, JI Conghao, DAI Yueyou, LI Shuxuan, FENG Shuying. Novel Gene Editing Technology Accelerates Maturation and Application of Dunaliella salina Expression Systems. China Biotechnology, 2024, 44(4): 102-111.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2309027        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I4/102

图1  盐藻表达系统的应用现状及前景
转化方法 转化基因 转化效率 转化系统 优缺点 参考文献
电穿孔 CATblebarGUS基因 约2.6% 细胞核、叶绿体 优点:无宿主限制、可重复性、简便、经济
缺点:损伤细胞
[21-22]
基因枪 PatEGFP基因 - 细胞核、叶绿体 优点:简便、快捷、经济
缺点:重复性差、费用高、损伤细胞
[8,23]
玻璃微珠 BarGUS基因 5.9% 细胞核 优点:简便、经济、可控、细胞损伤较小 [24]
农杆菌转化法 β-胡萝卜素羟化酶基因 11.5% 细胞核 优点:简便、经济
缺点:重复性差、易污染、培养环节要求高
[25]
细胞穿膜肽 GUS、β-葡糖醛酸酶基因 近100% 细胞核 优点:简单、快捷、高效、经济、不损伤细胞 [27-28]
盐梯度 GUS、β-胡萝卜素羟化酶基因 近100% 细胞核 优点:简便、经济、高效、不损伤细胞 [27,29]
LiAc/PEG GUSSKTI基因 7.2% 细胞核 优点:成熟、简便、经济、可重复性好
缺点:一定的细胞毒性
[30,32]
表1  盐藻细胞常用转化方法及其特点
图2  核酸酶诱导的双链断裂的修复途径
编辑系统 目的基因 产物或机制 应用 参考文献
传统转基因技术 流感病毒基因 重组禽流感病毒蛋白 疫苗制备 [2]
传统转基因技术 Can-N基因 血管能抑素 疾病治疗 [3]
传统转基因技术 VP28 白斑综合征病毒VP28蛋白 疫苗制备 [4]
CRISPR/Cas9 β-胡萝卜素羟化酶基因 β-胡萝卜素 提高天然成分的产量 [7,27]
传统转基因技术 SKTI基因 大豆kunitz胰蛋白酶抑制剂 疾病治疗 [32]
- 甘油-3-磷酸脱氢酶基因 饥饿诱导脂质代谢增加 生物燃料开发 [41]
传统转基因技术 NR基因 NR基因缺陷盐藻株 环保筛选标记 [42]
传统转基因技术 BKT基因 虾青素 提高天然成分的产量 [43]
传统转基因技术 硝酸盐转运蛋白基因 耐盐白菜植株 盐藻育种 [44]
表2  基因编辑技术在盐藻中的应用前景
[1] Ramachandran P, Pandey N K, Yadav R M, et al. Photosynthetic efficiency and transcriptome analysis of Dunaliella salina under hypersaline: a retrograde signaling mechanism in the chloroplast. Frontiers in Plant Science, 2023, 14: 1192258.
doi: 10.3389/fpls.2023.1192258
[2] Castellanos-Huerta I, Gómez-Verduzco G, Tellez-Isaias G, et al. Transformation of Dunaliella salina by Agrobacterium tumefaciens for the expression of the hemagglutinin of avian influenza virus H5. Microorganisms, 2022, 10(2): 361.
doi: 10.3390/microorganisms10020361
[3] Feng S Y, Li S Q, Li Q H, et al. Preparation of recombinant human canstatin using transgenic Dunaliella salina. Acta Biochimica et Biophysica Sinica, 2014, 46(5): 428-430.
doi: 10.1093/abbs/gmu009
[4] Feng S Y, Feng W P, Zhao L, et al. Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Archives of Virology, 2014, 159(3): 519-525.
doi: 10.1007/s00705-013-1856-7
[5] Castellanos-Huerta I, Gómez-Verduzco G, Tellez-Isaias G, et al. Immune evaluation of avian influenza virus HAr protein expressed in Dunaliella salina in the mucosa of chicken. Vaccines, 2022, 10(9): 1418.
doi: 10.3390/vaccines10091418
[6] Zhang Z H, He P, Zhou Y, et al. Anti-HBV effect of interferon-thymosin α1 recombinant proteins in transgenic Dunaliella salina in vitro and in vivo. Experimental and Therapeutic Medicine, 2018, 16(2): 517-522.
[7] Hu L N, Feng S Y, Liang G F, et al. CRISPR/Cas9-induced β-carotene hydroxylase mutation in Dunaliella salina CCAP19/18. AMB Express, 2021, 11(1): 83.
doi: 10.1186/s13568-021-01242-4
[8] Li D, Han X X, Zuo J, et al. Construction of rice site-specific chloroplast transformation vector and transient expression of EGFP gene in Dunaliella salina. Journal of Biomedical Nanotechnology, 2011, 7(6): 801-806.
doi: 10.1166/jbn.2011.1339
[9] Feng S Y, Wang Z L, Li A F, et al. Strategies for high-efficiency mutation using the CRISPR/Cas system. Frontiers in Cell and Developmental Biology, 2021, 9: 803252.
doi: 10.3389/fcell.2021.803252
[10] Bhatia S, Pooja, Yadav S K. CRISPR-Cas for genome editing: classification, mechanism, designing and applications. International Journal of Biological Macromolecules, 2023, 238: 124054.
doi: 10.1016/j.ijbiomac.2023.124054
[11] Jeong B R, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. Bioresource Technology, 2023, 373: 128701.
doi: 10.1016/j.biortech.2023.128701
[12] Gomes A R, Byregowda S M, Veeregowda B M, et al. An overview of heterologous expression host systems for the production of recombinant proteins. Advances in Animal and Veterinary Sciences, 2016, 4(7): 346-356.
doi: 10.14737/journal.aavs/2016/4.7.346.356
[13] Rozov S M, Zagorskaya A A, Konstantinov Y M, et al. Three parts of the plant genome: on the way to success in the production of recombinant proteins. Plants, 2022, 12(1): 38.
doi: 10.3390/plants12010038
[14] Feng S Y, Li X B, Xu Z S, et al. Dunaliella salina as a novel host for the production of recombinant proteins. Applied Microbiology and Biotechnology, 2014, 98(10): 4293-4300.
doi: 10.1007/s00253-014-5636-4
[15] Chen H, Jiang J G. Osmotic responses of Dunaliella to the changes of salinity. Journal of Cellular Physiology, 2009, 219(2): 251-258.
doi: 10.1002/jcp.21715 pmid: 19202552
[16] Singh P, Khadim R, Singh A K, et al. Biochemical and physiological characterization of a halotolerant Dunaliella salina isolated from hypersaline Sambhar Lake, India. Journal of Phycology, 2019, 55(1): 60-73.
doi: 10.1111/jpy.2019.55.issue-1
[17] Guermazi W, Masmoudi S, Trabelsi N A, et al. Physiological and biochemical responses in microalgae Dunaliella salina, Cylindrotheca closterium and Phormidium versicolor NCC 466 exposed to high salinity and irradiation. Life, 2023, 13(2): 313.
doi: 10.3390/life13020313
[18] Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, et al. Enhancing in vivo retinol bioavailability by incorporating β-carotene from alga Dunaliella salina into nanoemulsions containing natural-based emulsifiers. Food Research International, 2023, 164: 112359.
doi: 10.1016/j.foodres.2022.112359
[19] Zhang M P, Wang M, Wang C. Nuclear transformation of Chlamydomonas reinhardtii: a review. Biochimie, 2021, 181: 1-11.
doi: 10.1016/j.biochi.2020.11.016
[20] Feng S Y, Hu L N, Zhang Q H, et al. CRISPR/Cas technology promotes the various application of Dunaliella salina system. Applied Microbiology and Biotechnology, 2020, 104(20): 8621-8630.
doi: 10.1007/s00253-020-10892-6
[21] 宋程飞, 郝敬云, 程蔚兰, 等. 杜氏盐藻电击转化体系的优化. 山西农业大学学报(自然科学版), 2018, 38(3): 36-42.
Song C F, Hao J Y, Cheng W L, et al. Optimization of an electroporation-mediated transform system of Dunaliella salina. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(3): 36-42.
[22] 张汇征. 杜氏盐藻CCAP19/18叶绿体转化载体的构建及转化. 郑州: 郑州大学, 2012.
Zhang H Z. Construction and transformation of chloroplast transformation vector CCAP19/18 of Dunaliella salina duchenne. Zhengzhou: Zhengzhou University, 2012.
[23] Jung H S, Kim D S. Utility of the pat gene as a selectable marker gene in production of transgenic Dunaliella salina. Fisheries and Aquatic Sciences, 2016, 19: 31.
doi: 10.1186/s41240-016-0030-z
[24] Feng S Y, Xue L X, Liu H T, et al. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Molecular Biology Reports, 2009, 36(6): 1433-1439.
doi: 10.1007/s11033-008-9333-1
[25] Norzagaray-Valenzuela C D, Germán-Báez L J, Valdez-Flores M A, et al. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens. Journal of Microbiological Methods, 2018, 150: 9-17.
doi: S0167-7012(18)30191-X pmid: 29777738
[26] Srinivasan R, Gothandam K M. Synergistic action of D-glucose and acetosyringone on agrobacterium strains for efficient Dunaliella transformation. PLoS One, 2016, 11(6): e0158322.
doi: 10.1371/journal.pone.0158322
[27] Feng S Y, Hu L N, Li A F, et al. Nuclear localization signal peptides enhance genetic transformation of Dunaliella salina. Molecular Biology Reports, 2023, 50(2): 1459-1467.
doi: 10.1007/s11033-022-08159-6
[28] Falato L, Vunk B, Langel Ü. CRISPR/Cas9 plasmid delivery through the CPP: PepFect14. Methods in Molecular Biology, 2022, 2383: 587-593.
doi: 10.1007/978-1-0716-1752-6_38 pmid: 34766316
[29] Song G N, Wang W, Hu L N, et al. An exploration of the rapid transformation method for Dunaliella salina system. AMB Express, 2019, 9(1): 181.
doi: 10.1186/s13568-019-0905-3
[30] Chai X J, Jin F, Cong Y T, et al. Establishment of a new method for genetic transformation of Dunaliella salina. Agricultural Science & Technology, 2017, 18(8): 1374-1377.
[31] 苗朝悦, 杜乐, 王佳琦, 等. 重组蛋白质在大肠杆菌体系中的可溶性表达策略. 中国生物工程杂志, 2023, 43(9): 33-45.
Miao C Y, Du L, Wang J Q, et al. Soluble expression strategies for production of recombinant proteins in Escherichia coli. China Biotechnology, 2023, 43(9): 33-45.
[32] Chai X J, Chen H X, Xu W Q, et al. Expression of soybean Kunitz trypsin inhibitor gene SKTI in Dunaliella salina. Journal of Applied Phycology, 2013, 25(1): 139-144.
doi: 10.1007/s10811-012-9847-8
[33] Lee D W, Hwang I. Evolution and design principles of the diverse chloroplast transit peptides. Molecules and Cells, 2018, 41(3): 161-167.
doi: 10.14348/molcells.2018.0033 pmid: 29487274
[34] Del Vasto M, Figueroa-Martinez F, Featherston J, et al. Massive and widespread organelle genomic expansion in the green algal genus Dunaliella. Genome Biology and Evolution, 2015, 7(3): 656-663.
doi: 10.1093/gbe/evv027
[35] Ahmad N, Mehmood M A, Malik S. Recombinant protein production in microalgae: emerging trends. Protein and Peptide Letters, 2020, 27(2): 105-110.
doi: 10.2174/0929866526666191014124855 pmid: 31622194
[36] Huang X W, Li A F, Xu P, et al. Current and prospective strategies for advancing the targeted delivery of CRISPR/Cas system via extracellular vesicles. Journal of Nanobiotechnology, 2023, 21(1): 184.
doi: 10.1186/s12951-023-01952-w pmid: 37291577
[37] Cutolo E A, Mandalà G, Dall’Osto L, et al. Harnessing the algal chloroplast for heterologous protein production. Microorganisms, 2022, 10(4): 743.
doi: 10.3390/microorganisms10040743
[38] Taunt H N, Jackson H O, Gunnarsson Í N, et al. Accelerating chloroplast engineering: a new system for rapid generation of marker-free transplastomic lines of Chlamydomonas reinhardtii. Microorganisms, 2023, 11(8): 1967.
doi: 10.3390/microorganisms11081967
[39] Ng I S, Keskin B B, Tan S I. A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria. Biotechnology Journal, 2020, 15(8): e1900228.
[40] Muñoz C F, Südfeld C, Naduthodi M I S, et al. Genetic engineering of microalgae for enhanced lipid production. Biotechnology Advances, 2021, 52: 107836.
doi: 10.1016/j.biotechadv.2021.107836
[41] Wu Q, Lan Y H, Cao X Y, et al. Characterization and diverse evolution patterns of glycerol-3-phosphate dehydrogenase family genes in Dunaliella salina. Gene, 2019, 710: 161-169.
doi: 10.1016/j.gene.2019.05.056
[42] Gao L J, Jia Y L, Li S K, et al. Characterization of novel nitrate reductase-deficient mutants for transgenic Dunaliella salina systems. Genetics and Molecular Research, 2015, 14(4): 13289-13299.
doi: 10.4238/2015.October.26.25 pmid: 26535642
[43] Chen Y X, Bi C B, Zhang J, et al. Astaxanthin biosynthesis in transgenic Dunaliella salina (Chlorophyceae) enhanced tolerance to high irradiation stress. South African Journal of Botany, 2020, 133: 132-138.
doi: 10.1016/j.sajb.2020.07.008
[44] 段露露. 杜氏盐藻促生菌鉴定及提高小白菜抗盐性效应的研究. 太原: 山西农业大学, 2020.
Duan L L. Identification of the probiotics isolated from Dunaliella salina phycosphere and study on effects of probiotics improving salt-tress resistance of pakchoi cabbage. Taiyuan: Shanxi Agricultural University, 2020.
[45] Ahmed R A, He M L, Aftab R A, et al. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Scientific Reports, 2017, 7(1): 8118.
doi: 10.1038/s41598-017-07540-x
[46] Fayyaz M, Chew K W, Show P L, et al. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances, 2020, 43: 107554.
doi: 10.1016/j.biotechadv.2020.107554
[47] Ma X C, Zheng H L, Addy M, et al. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production. Bioresource Technology, 2016, 207: 252-261.
doi: 10.1016/j.biortech.2016.02.013
[48] Benhima R, El Arroussi H, Kadmiri I M, et al. Nitrate reductase inhibition induces lipid enhancement of Dunaliella tertiolecta for biodiesel production. The Scientific World Journal, 2018, 2018: 6834725.
[49] Yao L, Cengic I, Anfelt J, et al. Multiple gene repression in cyanobacteria using CRISPRi. ACS Synthetic Biology, 2016, 5(3): 207-212.
doi: 10.1021/acssynbio.5b00264 pmid: 26689101
[50] Almutairi A W. Full utilization of marine microalgal hydrothermal liquefaction liquid products through a closed-loop route: towards enhanced bio-oil production and zero-waste approach. 3 Biotech, 2022, 12(9): 209.
doi: 10.1007/s13205-022-03262-8 pmid: 35935543
[51] Gong F H, Liu H T, Li J, et al. Peroxiredoxin 1 is involved in disassembly of flagella and cilia. Biochemical and Biophysical Research Communications, 2014, 444(3): 420-426.
doi: 10.1016/j.bbrc.2014.01.081 pmid: 24480440
[52] Spínola-Lasso E, Montero J C, Jiménez-Monzón R, et al. Chemical-proteomics identify peroxiredoxin-1 as an actionable target in triple-negative breast cancer. International Journal Biological Sciences, 2023, 19(6): 1731-1747.
doi: 10.7150/ijbs.78554
[53] 史浩. 基于盐藻外泌体靶向药物递送系统的构建及对食管癌的作用研究. 洛阳: 河南科技大学, 2020.
Shi H. Construction of targeted drug delivery system based on Dunaliella salina exosomes and its effects on esophageal cancer. Luoyang: Henan University of Science and Technology, 2020.
[54] Dehghani J, Adibkia K, Movafeghi A, et al. Designing a new generation of expression toolkits for engineering of green microalgae; robust production of human interleukin-2. Bioimpacts: BI, 2020, 10(4): 259-268.
[55] Havas F, Krispin S, Cohen M, et al. A Dunaliella salina extract counteracts skin aging under intense solar irradiation thanks to its antiglycation and anti-inflammatory properties. Marine Drugs, 2022, 20(2): 104.
doi: 10.3390/md20020104
[56] Cakmak Y S, Kaya M, Asan-Ozusaglam M. Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga. Excli Journal, 2014, 13: 679-690.
pmid: 26417292
[57] Chitranjali T, Anoop Chandran P, Muraleedhara Kurup G. Omega-3 fatty acid concentrate from Dunaliella salina possesses anti-inflammatory properties including blockade of NF-κB nuclear translocation. Immunopharmacology and Immunotoxicology, 2015, 37(1): 81-89.
doi: 10.3109/08923973.2014.981639
[58] Elleuch F, Baril P, Barkallah M, et al. Deciphering the biological activities of Dunaliella sp. aqueousextract from stressed conditions on breast cancer: from in vitro to in vivo investigations. International Journal of Molecular Sciences, 2020, 21(5): 1719.
doi: 10.3390/ijms21051719
[59] Chuang W C, Ho Y C, Liao J W, et al. Dunaliella salina exhibits an antileukemic immunity in a mouse model of WEHI-3 leukemia cells. Journal of Agricultural and Food Chemistry, 2014, 62(47): 11479-11487.
doi: 10.1021/jf503564b
[60] 林彬. 杜氏盐藻产虾青素细胞工厂的构建. 淄博: 山东理工大学, 2019.
Lin B. Construction of a cell factory producing astaxanthin cell from Dunaliella salina. Zibo: Shandong University of Technology, 2019.
[61] Barros A, Pereira H, Campos J, et al. Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Scientific Reports, 2019, 9(1): 13935.
doi: 10.1038/s41598-019-50206-z pmid: 31558732
[62] 陈涛, 刘红涛, 吕鹏举, 等. 杜氏盐藻异养表达载体的构建及异养转化株的鉴定. 生物工程学报, 2009, 25(3): 392-398.
pmid: 19621580
Chen T, Liu H T, Lv P J, et al. Construction of Dunaliella salina heterotrophic expression vectors and identification of heterotrophically transformed algal strains. Chinese Journal of Biotechnology, 2009, 25(3): 392-398.
pmid: 19621580
[63] Zeballos N, Grulois D, Leung C, et al. Acceptable loss: fitness consequences of salinity-induced cell death in a halotolerant microalga. The American Naturalist, 2023, 201(6): 825-840.
doi: 10.1086/724417 pmid: 37229704
[64] Mushtaq M, Bhat J A, Mir Z A, et al. CRISPR/Cas approach: a new way of looking at plant-abiotic interactions. Journal of Plant Physiology, 2018, 224-225: 156-162.
[65] Leung C, Grulois D, Chevin L M. Plasticity across levels: relating epigenomic, transcriptomic, and phenotypic responses to osmotic stress in a halotolerant microalga. Molecular Ecology, 2022, 31(18): 4672-4687.
doi: 10.1111/mec.v31.18
[66] Sui Y X, Vlaeminck S E. Dunaliella microalgae for nutritional protein: an undervalued asset. Trends in Biotechnology, 2020, 38(1): 10-12.
doi: 10.1016/j.tibtech.2019.07.011
[67] Yoo B C, Yadav N S, Orozco E M, et al. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ, 2020, 8: e8362.
doi: 10.7717/peerj.8362
[68] Mok B Y, de Moraes M H, Zeng J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature, 2020, 583(7817): 631-637.
doi: 10.1038/s41586-020-2477-4
[69] He Y B, Zhao Y D. Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH, 2019, 1(1): 88-96.
doi: 10.1007/s42994-019-00013-x
[1] 许丽, 杨若南, 王玥, 施慧琳, 李祯祺, 靳晨琦, 李伟, 徐萍. 生命健康科技领域发展态势*[J]. 中国生物工程杂志, 2024, 44(1): 32-40.
[2] 辛圆, 田开仁, 乔建军, 财音青格乐. 基于CRISPR/Cas系统的基因编辑工具及其改进策略*[J]. 中国生物工程杂志, 2023, 43(8): 72-85.
[3] 冯雪娇, 衡超, 于新语, 王俊姝. 基因治疗行业市场分析及展望*[J]. 中国生物工程杂志, 2023, 43(6): 102-112.
[4] 杨镒婴, 李晓乐, 李子龙, 李秋园, 陈伟, 尹守亮. 反选标记法在微生物基因敲除中的应用*[J]. 中国生物工程杂志, 2023, 43(4): 101-111.
[5] 张俊有,王棨临,刘倩,漆思晗,李春燕. CRISPR/Cas基因编辑技术在增强子功能分析及鉴定中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 24-32.
[6] 孙瑾瑜,刘光,李晨,王颖,刘国庆. 重组酶介导的定点整合及在构建重组CHO细胞中的应用[J]. 中国生物工程杂志, 2022, 42(12): 52-60.
[7] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[8] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[9] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[10] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[11] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[12] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[13] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[14] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[15] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.