Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (4): 67-75    DOI: 10.13523/j.cb.2309017
综述     
外泌体与肺纤维化研究进展*
叶灏鑫,王晓旭,李明霏,王宇**()
河北大学中医学院 保定 071002
Research Progress on Extracellular Vesicles and Pulmonary Fibrosis
YE Haoxin,WANG Xiaoxu,LI Mingfei,WANG Yu**()
College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
 全文: PDF(899 KB)   HTML
摘要:

肺纤维化是一种由肺泡外基质蛋白过度沉积导致的肺部不可逆的结构和功能改变的肺部疾病,表现为纤维化重构和肺泡破坏。外泌体作为一种细胞外囊泡,可通过递送特定细胞类型产生的功能性核酸和蛋白质来介导细胞间通讯。近年来的研究发现,外泌体在肺纤维化的诊断和治疗中具有重要作用,被认为是一种潜在的生物治疗方法和药物递送载体。研究外泌体在肺纤维化发生发展中的作用,以期为肺纤维化的外泌体治疗研究提供新的思路。

关键词: 外泌体肺纤维化细胞外囊泡药物递送载体诊断和治疗    
Abstract:

Pulmonary fibrosis is a disease characterized by irreversible structural and functional changes in the lung caused by excessive deposition of extracellular matrix proteins, resulting in fibrotic remodeling and alveolar destruction. As extracellular vesicles, exosomes can mediate intercellular communication by delivering functional nucleic acids and proteins produced by specific cell types. Recent studies have shown that exosomes play an important role in the diagnosis and treatment of pulmonary fibrosis and are considered to be a potential biological treatment method and drug delivery carrier. This review aims to summarize the current research on the role and therapeutic application of exosomes in pulmonary fibrosis, and to provide insights into the future development direction and prospects of exosome research, so as to provide new ideas for the treatment of exosomes in pulmonary fibrosis.

Key words: Exosomes    Pulmonary fibrosis    Extracellular vesicles    Drug delivery vehicle    Diagnosis and treatment
收稿日期: 2023-09-15 出版日期: 2024-04-30
ZTFLH:  Q257  
基金资助: * 河北省自然科学基金(H2021201040)
通讯作者: ** 电子信箱:315338610@qq.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
叶灏鑫
王晓旭
李明霏
王宇

引用本文:

叶灏鑫, 王晓旭, 李明霏, 王宇. 外泌体与肺纤维化研究进展*[J]. 中国生物工程杂志, 2024, 44(4): 67-75.

YE Haoxin, WANG Xiaoxu, LI Mingfei, WANG Yu. Research Progress on Extracellular Vesicles and Pulmonary Fibrosis. China Biotechnology, 2024, 44(4): 67-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2309017        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I4/67

图1  外泌体组成
图2  外泌体的生物发生
图3  外泌体的释放与摄取
图4  肺纤维化中ECM沉积
[1] Wijsenbeek M. Progress in the treatment of pulmonary fibrosis. The Lancet Respiratory Medicine, 2020, 8(5): 424-425.
doi: 10.1016/S2213-2600(20)30062-X
[2] Anel A, Gallego-Lleyda A, de Miguel D, et al. Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells, 2019, 8(2): 154.
doi: 10.3390/cells8020154
[3] Popowski K, Lutz H, Hu S Q, et al. Exosome therapeutics for lung regenerative medicine. Journal of Extracellular Vesicles, 2020, 9(1): 1785161.
doi: 10.1080/20013078.2020.1785161
[4] Zhang T, Zhang M, Yang L Q, et al. Potential targeted therapy based on deep insight into the relationship between the pulmonary microbiota and immune regulation in lung fibrosis. Frontiers in Immunology, 2023, 14: 1032355.
doi: 10.3389/fimmu.2023.1032355
[5] Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 2019, 21(1): 9-17.
doi: 10.1038/s41556-018-0250-9 pmid: 30602770
[6] Cui X J, Huang M S, Wang S W, et al. Circulating exosomes from patients with Graves’ disease induce an inflammatory immune response. Endocrinology, 2021, 162(3): bqaa236.
doi: 10.1210/endocr/bqaa236
[7] Zhang B, Yeo R W Y, Lai R C, et al. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway. Cytotherapy, 2018, 20(5): 687-696.
doi: S1465-3249(18)30408-0 pmid: 29622483
[8] Zhong Y X, Li X, Wang F L, et al. Emerging potential of exosomes on adipogenic differentiation of mesenchymal stem cells. Frontiers in Cell and Developmental Biology, 2021, 9: 649552.
doi: 10.3389/fcell.2021.649552
[9] Liu K, Gao X, Kang B Q, et al. The role of tumor stem cell exosomes in cancer invasion and metastasis. Frontiers in Oncology, 2022, 12: 836548.
doi: 10.3389/fonc.2022.836548
[10] Ferguson S W, Wang J L, Lee C J, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Scientific Reports, 2018, 8(1): 1419.
doi: 10.1038/s41598-018-19581-x pmid: 29362496
[11] Yang Y F, Huang H, Li Y. Roles of exosomes and exosome-derived miRNAs in pulmonary fibrosis. Frontiers in Pharmacology, 2022, 13: 928933.
doi: 10.3389/fphar.2022.928933
[12] 彭雪强. IKKβ激活诱导肿瘤细胞自噬内涵体形成和细胞外囊泡分泌的机制研究. 沈阳: 中国医科大学, 2021.
Peng X Q. The mechanism of IKKβ activation promotes amphisome formation and extracellular vesicle secretion in tumor cells. Shenyang: China Medical University, 2021.
[13] Xu M X, Ji J, Jin D D, et al. The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): intercellular shuttles and implications in human diseases. Genes & Diseases, 2023, 10(5): 1894-1907.
[14] Wang X N, Wu R Y, Zhai P S, et al. Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIF-1α. Journal of Extracellular Vesicles, 2023, 12(2): e12310.
doi: 10.1002/jev2.v12.2
[15] Pfeffer S R. Unsolved mysteries in membrane traffic. Annual Review of Biochemistry, 2007, 76: 629-645.
pmid: 17263661
[16] Bröcker C, Engelbrecht-Vandré S, Ungermann C. Multisubunit tethering complexes and their role in membrane fusion. Current Biology, 2010, 20(21): R943-R952.
doi: 10.1016/j.cub.2010.09.015
[17] Mulcahy L A, Pink R C, Carter D R F. Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles, 2014, 3: 24641.
doi: 10.3402/jev.v3.24641
[18] Krylova S V, Feng D R. The machinery of exosomes: biogenesis, release, and uptake. International Journal of Molecular Sciences, 2023, 24(2): 1337.
doi: 10.3390/ijms24021337
[19] Tian T, Zhu Y L, Zhou Y Y, et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. Journal of Biological Chemistry, 2014, 289(32): 22258-22267.
doi: 10.1074/jbc.M114.588046 pmid: 24951588
[20] Puglisi S, Torrisi S E, Giuliano R, et al. What we know about the pathogenesis of idiopathic pulmonary fibrosis. Seminars in Respiratory and Critical Care Medicine, 2016, 37(3): 358-367.
doi: 10.1055/s-0036-1580693 pmid: 27231860
[21] Mei Q R, Liu Z, Zuo H, et al. Idiopathic pulmonary fibrosis: an update on pathogenesis. Frontiers in Pharmacology, 2021, 12: 797292.
doi: 10.3389/fphar.2021.797292
[22] Deng Z J, Fear M W, Choi Y S, et al. The extracellular matrix and mechanotransduction in pulmonary fibrosis. The International Journal of Biochemistry & Cell Biology, 2020, 126: 105802.
doi: 10.1016/j.biocel.2020.105802
[23] Bueno M, Calyeca J, Rojas M, et al. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biology, 2020, 33: 101509.
doi: 10.1016/j.redox.2020.101509
[24] Zhu L, Chen Y H, Chen M, et al. Mechanism of miR-204-5p in exosomes derived from bronchoalveolar lavage fluid on the progression of pulmonary fibrosis via AP1S2. Annals of Translational Medicine, 2021, 9(13): 1068.
doi: 10.21037/atm-20-8033 pmid: 34422980
[25] Chen L, Yang Y, Yue R M, et al. Exosomes derived from hypoxia-induced alveolar epithelial cells stimulate interstitial pulmonary fibrosis through a HOTAIRM1-dependent mechanism. Laboratory Investigation, 2022, 102: 935-944.
doi: 10.1038/s41374-022-00782-y pmid: 35477975
[26] Martin-Medina A, Lehmann M, Burgy O, et al. Increased extracellular vesicles mediate WNT5A signaling in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198(12): 1527-1538.
doi: 10.1164/rccm.201708-1580OC pmid: 30044642
[27] Tsukui T, Sun K H, Wetter J B, et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications, 2020, 11(1): 1920.
doi: 10.1038/s41467-020-15647-5 pmid: 32317643
[28] Heukels P, Moor C C, von der Thüsen J H, et al. Inflammation and immunity in IPF pathogenesis and treatment. Respiratory Medicine, 2019, 147: 79-91.
doi: 10.1016/j.rmed.2018.12.015
[29] Hewlett J C, Kropski J A, Blackwell T S. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biology, 2018, 71-72: 112-127.
[30] Lv M, Liu Y, Ma S L, et al. Current advances in idiopathic pulmonary fibrosis: the pathogenesis, therapeutic strategies and candidate molecules. Future Medicinal Chemistry, 2019, 11(19): 2595-2620.
doi: 10.4155/fmc-2019-0111 pmid: 31633402
[31] Cameli P, Carleo A, Bergantini L, et al. Oxidant/antioxidant disequilibrium in idiopathic pulmonary fibrosis pathogenesis. Inflammation, 2020, 43(1): 1-7.
doi: 10.1007/s10753-019-01059-1 pmid: 31297749
[32] Tan J L, Lau S N, Leaw B, et al. Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Translational Medicine, 2018, 7(2): 180-196.
doi: 10.1002/sctm.17-0185 pmid: 29297621
[33] Sun L F, Zhu M, Feng W, et al. Exosomal miRNA let-7 from menstrual blood-derived endometrial stem cells alleviates pulmonary fibrosis through regulating mitochondrial DNA damage. Oxidative Medicine and Cellular Longevity, 2019, 2019: 4506303.
[34] Mansouri N, Willis G R, Fernandez-Gonzalez A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 2019, 4(21): e128060.
doi: 10.1172/jci.insight.128060
[35] Zhou Y, Gao Y, Zhang W, et al. Exosomes derived from induced pluripotent stem cells suppresses M2-type macrophages during pulmonary fibrosis via miR-302a-3p/TET1 axis. International Immunopharmacology, 2021, 99: 108075.
doi: 10.1016/j.intimp.2021.108075
[36] Qin X F, Lin X F, Liu L, et al. Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner. Journal of Cellular and Molecular Medicine, 2021, 25(9): 4466-4477.
doi: 10.1111/jcmm.16524 pmid: 33834616
[37] Sun N N, Zhang Y, Huang W H, et al. Macrophage exosomes transfer angiotensin II type 1 receptor to lung fibroblasts mediating bleomycin-induced pulmonary fibrosis. Chinese Medical Journal, 2021, 134(18): 2175-2185.
doi: 10.1097/CM9.0000000000001605
[38] Yi X M, Wei X X, Lv H J, et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Experimental Cell Research, 2019, 383(2): 111454.
doi: 10.1016/j.yexcr.2019.05.035
[39] Guiot J, Cambier M, Boeckx A, et al. Macrophage-derived exosomes attenuate fibrosis in airway epithelial cells through delivery of antifibrotic miR-142-3p. Thorax, 2020, 75(10): 870-881.
doi: 10.1136/thoraxjnl-2019-214077 pmid: 32759383
[40] Qin X J, Zhang J X, Wang R L. Exosomes as mediators and biomarkers in fibrosis. Biomarkers in Medicine, 2020, 14(8): 697-712.
doi: 10.2217/bmm-2019-0368
[41] Wu Y H, Yuan W, Ding H, et al. Serum exosomal miRNA from endometriosis patients correlates with disease severity. Archives of Gynecology and Obstetrics, 2022, 305(1): 117-127.
doi: 10.1007/s00404-021-06227-z
[42] Lacedonia D, Scioscia G, Soccio P, et al. Downregulation of exosomal let-7d and miR-16 in idiopathic pulmonary fibrosis. BMC Pulmonary Medicine, 2021, 21(1): 188.
doi: 10.1186/s12890-021-01550-2 pmid: 34088304
[43] Shaba E, Landi C, Carleo A, et al. Proteome characterization of BALF extracellular vesicles in idiopathic pulmonary fibrosis: unveiling undercover molecular pathways. International Journal of Molecular Sciences, 2021, 22(11): 5696.
doi: 10.3390/ijms22115696
[44] Liu B, Jiang T S, Hu X G, et al. Downregulation of microRNA-30a in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients. Molecular Medicine Reports, 2018, 18(6): 5799-5806.
[45] Vasse G F, Nizamoglu M, Heijink I H, et al. Macrophage-stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. The Journal of Pathology, 2021, 254(4): 344-357.
doi: 10.1002/path.5632 pmid: 33506963
[46] Kishore A, Petrek M. Roles of macrophage polarization and macrophage-derived miRNAs in pulmonary fibrosis. Frontiers in Immunology, 2021, 12: 678457.
doi: 10.3389/fimmu.2021.678457
[47] Guiot J, Demarche S, Henket M, et al. Methodology for sputum induction and laboratory processing. Journal of Visualized Experiments, 2017(130): e56612.
[48] Njock M S, Guiot J, Henket M A, et al. Sputum exosomes: promising biomarkers for idiopathic pulmonary fibrosis. Thorax, 2019, 74(3): 309-312.
doi: 10.1136/thoraxjnl-2018-211897
[49] Wollin L, Distler J H W, Redente E F, et al. Potential of nintedanib in treatment of progressive fibrosing interstitial lung diseases. The European Respiratory Journal, 2019, 54(3): 1900161.
doi: 10.1183/13993003.00161-2019
[50] Dinh P U C, Paudel D, Brochu H, et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nature Communications, 2020, 11(1): 1064.
doi: 10.1038/s41467-020-14344-7
[51] Worthington E N, Hagood J S. Therapeutic use of extracellular vesicles for acute and chronic lung disease. International Journal of Molecular Sciences, 2020, 21(7): 2318.
doi: 10.3390/ijms21072318
[52] Mehryab F, Rabbani S, Shahhosseini S, et al. Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges. Acta Biomaterialia, 2020, 113: 42-62.
doi: S1742-7061(20)30366-4 pmid: 32622055
[53] Lai R C, Arslan F, Lee M M, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 2010, 4(3): 214-222.
doi: 10.1016/j.scr.2009.12.003 pmid: 20138817
[54] Liang H Y, Zhang L Y, Zhao X X, et al. The therapeutic potential of exosomes in lung cancer. Cellular Oncology, 2023, 46(5): 1181-1212.
doi: 10.1007/s13402-023-00815-8
[55] Wang X, Gao J L, Zhao M M, et al. Therapeutic effects of conditioned medium from bone marrow-derived mesenchymal stem cells on epithelial-mesenchymal transition in A549 cells. International Journal of Molecular Medicine, 2018, 41(2): 659-668.
doi: 10.3892/ijmm.2017.3284 pmid: 29207055
[56] Bandeira E, Oliveira H, Silva J D, et al. Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respiratory Research, 2018, 19(1): 104.
doi: 10.1186/s12931-018-0802-3 pmid: 29843724
[57] Hostettler K E, Gazdhar A, Khan P, et al. Multipotent mesenchymal stem cells in lung fibrosis. PLoS One, 2017, 12(8): e0181946.
doi: 10.1371/journal.pone.0181946
[58] 郝东霞, 田梦园, 刘洋, 等. 乳外泌体的基本性质及其应用. 中国生物工程杂志, 2023, 43(Z1): 26-42.
Hao D X, Tian M Y, Liu Y, et al. Basic properties and applications of milk exosomes. China Biotechnology, 2023, 43(Z1): 26-42.
[59] Skibba M, Drelich A, Poellmann M, et al. Nanoapproaches to modifying epigenetics of epithelial mesenchymal transition for treatment of pulmonary fibrosis. Frontiers in Pharmacology, 2020, 11: 607689.
doi: 10.3389/fphar.2020.607689
[60] 吴忧, 辛林. 新的药物传递系统: 外泌体作为药物载体递送. 中国生物工程杂志, 2020, 40(9): 28-35.
Wu Y, Xin L. New drug delivery system: delivery of exosomes as drug carriers. China Biotechnology, 2020, 40(9): 28-35.
[61] Hazrati A, Mirsanei Z, Heidari N, et al. The potential application of encapsulated exosomes: a new approach to increase exosomes therapeutic efficacy. Biomedicine & Pharmacotherapy, 2023, 162: 114615.
doi: 10.1016/j.biopha.2023.114615
[62] Moholkar D N, Kandimalla R, Gupta R C, et al. Advances in lipid-based carriers for cancer therapeutics: liposomes, exosomes and hybrid exosomes. Cancer Letters, 2023, 565: 216220.
doi: 10.1016/j.canlet.2023.216220
[63] Guiot J, Struman I, Louis E, et al. Exosomal miRNAs in lung diseases: from biologic function to therapeutic targets. Journal of Clinical Medicine, 2019, 8(9): 1345.
doi: 10.3390/jcm8091345
[64] Chen C C, Liu L N, Ma F X, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cellular and Molecular Bioengineering, 2016, 9(4): 509-529.
doi: 10.1007/s12195-016-0458-3
[65] 吕慧中, 赵晨辰, 朱链, 等. 外泌体靶向递药在肿瘤治疗中的进展. 中国生物工程杂志, 2021, 41(5): 79-86.
Lv H Z, Zhao C C, Zhu L, et al. Progress of using exosome for drug targeted delivery in tumor therapy. China Biotechnology, 2021, 41(5): 79-86.
[66] Kim G, Lee Y, Ha J, et al. Engineering exosomes for pulmonary delivery of peptides and drugs to inflammatory lung cells by inhalation. Journal of Controlled Release, 2021, 330: 684-695.
doi: 10.1016/j.jconrel.2020.12.053 pmid: 33388343
[67] Sun L N, Fan M R, Huang D, et al. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis. Biomaterials, 2021, 271: 120761.
doi: 10.1016/j.biomaterials.2021.120761
[1] 王尚志, 章瑾, 杨明睿, 闫滨. 小细胞外囊泡在乳腺癌诊断与治疗中的研究进展*[J]. 中国生物工程杂志, 2024, 44(4): 54-66.
[2] 樊宇钦, 黎智康, 梁至轩, 赵紫涵, 谢秋玲. 高效包载酪氨酸羟化酶mRNA外泌体的制备*[J]. 中国生物工程杂志, 2024, 44(2/3): 69-75.
[3] 王珊, 曹玉林, 吴迪, 屈姣, 余娅丽, 李秋柏. 细胞外囊泡表面蛋白冠的研究进展*[J]. 中国生物工程杂志, 2024, 44(2/3): 134-141.
[4] 王泽华, 张丽昀, 马春燕. 间充质干细胞来源细胞外囊泡对肺部疾病作用研究进展*[J]. 中国生物工程杂志, 2023, 43(5): 76-84.
[5] 郝东霞, 田梦园, 刘洋, 李星, 张媛. 乳外泌体的基本性质及其应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 26-42.
[6] 蔡年桂, 陈欣, 张清源, 底浩楠, 詹小贞, 陈军岩, 陈昊, 颜晓梅. 窥探纳米世界:纳米流式检测技术的研发及单颗粒水平表征应用*[J]. 中国生物工程杂志, 2023, 43(12): 1-13.
[7] 项建, 叶邦策, 尹斌成. 功能化外泌体重编程免疫细胞与肿瘤细胞之间靶向识别*[J]. 中国生物工程杂志, 2023, 43(10): 1-9.
[8] 王璐,陈梦丽,何芳,项建,尹斌成,叶邦策. 工程化外泌体介导巨噬细胞清除肿瘤外泌体*[J]. 中国生物工程杂志, 2022, 42(6): 1-11.
[9] 毕煦昆,郭成龙,赵建栋,任行全,柴威涛. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展*[J]. 中国生物工程杂志, 2022, 42(10): 70-79.
[10] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[11] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[12] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[13] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[14] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[15] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.