Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (4): 54-66    DOI: 10.13523/j.cb.2308041
综述     
小细胞外囊泡在乳腺癌诊断与治疗中的研究进展*
王尚志1,章瑾1,杨明睿1,闫滨2,**()
1 山东中医药大学药学院 济南 250355
2 山东中医药大学中医学院 济南 250355
Research Progress of Small Extracellular Vesicles in the Diagnosis and Treatment of Breast Cancer
WANG Shangzhi1,ZHANG Jin1,YANG Mingrui1,YAN Bin2,**()
1 School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
2 College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
 全文: PDF(1272 KB)   HTML
摘要:

小细胞外囊泡(small extracellular vesicles,sEVs)是一类具有脂质双层膜结构的细胞外囊泡,能够参与细胞间通讯,是一种良好的药物递送载体。小细胞外囊泡中的微小RNA(miRNA)、长链非编码RNA(long non-coding RNA,lncRNA)、环状RNA(circRNA)和蛋白质等多种成分参与调控肿瘤发生发展的重要机制,能够反映细胞的生理状态与功能状态,且大量存在于患者的血浆、尿液、唾液中,对小细胞外囊泡进行分析和检测可能成为肿瘤诊断的新型手段。除了作为肿瘤诊断的生物标志物,小细胞外囊泡还通过其内容物或作为特异性药物递送载体来调控肿瘤细胞的侵袭转移、机体耐药、细胞因子分泌表达与免疫应答,发挥其抗肿瘤作用。总结近五年来小细胞外囊泡中RNA(miRNA、lncRNA、circRNA)与蛋白质作为乳腺癌诊断的生物标志物以及在乳腺癌治疗中的潜力的相关研究,阐述小细胞外囊泡作为新型诊断与治疗方法的优势与不足,为小细胞外囊泡在乳腺癌诊疗领域的临床应用提供参考。

关键词: 小细胞外囊泡外泌体乳腺癌生物标志物递送载体诊疗    
Abstract:

Small extracellular vesicles (sEVs) are a class of extracellular vesicles with a lipid bilayer membrane structure, which can participate in intercellular communication and be used as nanovesicles for drug delivery. The microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), and proteins in sEVs are important mechanisms to regulate the development of tumors, and reflect the physiological and functional states of cells. They are present in large quantities in the plasma, urine, and saliva of patients, so the analysis and detection of sEVs may become a novel means of tumor diagnosis. In addition to being a biomarker for tumor diagnosis, sEVs can also regulate the invasion and metastasis of tumor cells, drug resistance, cytokine secretion and expression, and immune response via their contents or as specific drug delivery carriers to exert their anti-tumor effects. This paper summarizes the last five years of research on the use of RNAs (miRNAs, lncRNAs, circRNAs) and proteins in sEVs as biomarkers for breast cancer diagnosis and their therapeutic potential in breast cancer, and describes the advantages and shortcomings of sEVs as a new type of diagnostic and therapeutic method to provide references for the future clinical application of sEVs in the field of breast cancer diagnosis and treatment.

Key words: Small extracellular vesicles    Exosomes    Breast cancer    Biomarkers    Delivery carrier    Diagnosis and treatment
收稿日期: 2023-08-31 出版日期: 2024-04-30
ZTFLH:  Q257  
基金资助: * 国家卫生部重大新药创制科技重大专项(2014ZX09509001001)
通讯作者: ** 电子信箱:60020078@sdutcm.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王尚志
章瑾
杨明睿
闫滨

引用本文:

王尚志, 章瑾, 杨明睿, 闫滨. 小细胞外囊泡在乳腺癌诊断与治疗中的研究进展*[J]. 中国生物工程杂志, 2024, 44(4): 54-66.

WANG Shangzhi, ZHANG Jin, YANG Mingrui, YAN Bin. Research Progress of Small Extracellular Vesicles in the Diagnosis and Treatment of Breast Cancer. China Biotechnology, 2024, 44(4): 54-66.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2308041        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I4/54

图1  小细胞外囊泡的分子结构
图2  小细胞外囊泡的合成、分泌、摄取
方法 原理 优点 缺点 参考文献
差速离心法 通过逐渐提高离心速度的方法进行分离 操作简单,可以大批量处理,无需添加化学试剂 费时,得率不稳定,纯度低 [18]
密度梯度离心法 通过超速离心力在一定浓度梯度的介质中完成分离 与差速离心法相比,纯度更高 设备贵,工艺繁琐,费时,样品量小,不适合大规模使用 [19]
超滤法 通过超滤膜对不同截流分子量的生物样品进行分离 纯度高,操作简单 寿命短,超滤膜堵塞会降低效率 [17]
聚合物沉淀法 通过聚合物与外泌体作用形成疏水微环境完成分离 成本低,不需大型设备,操作简单 纯度低,易污染 [20]
免疫亲和法 通过抗体与小细胞外囊泡表面膜蛋白作用进行分离 纯度高,特异性强 成本高,费时 [21]
表1  常用小细胞外囊泡分离方法优缺点比较
方法 原理 优点 缺点 参考文献
乳腺钼靶X线
摄影
通过软X线对乳腺组织进行投照成像 准确性高,对微小钙化敏感 有辐射,难以辨别腺体和病变重叠的病例 [23]
乳腺彩色多普勒
超声检查
利用多普勒效应成像 操作简单,无辐射 难以识别过小的肿块,对微小钙化不敏感,可能遗漏病变 [24]
磁共振成像 氢原子核在磁场中产生信号,经过计算机重建处理成像 检查浸润性乳腺癌的敏感性(>98%)高于钼靶和超声 设备昂贵,检查时间久,假阳性较高,特异度低,不能显示微小钙化 [25]
乳腺活检 通过局部切除、穿刺针吸等方法从患者活体采取病变组织进行病理检查 对正常组织破坏小,可提供病理诊断、组织分级和激素受体等信息 可能引起活检部位的疼痛、感染、出血,导致癌细胞的扩散 [26]
表2  常用乳腺癌诊断方法优缺点比较
小细胞外囊泡货物 表达变化 外泌体来源 样本数量 诊断效果 参考文献
miR-18a-3p 上调 血清 12名乳腺癌患者和12名乳腺纤维瘤患者 AUC = 0.83 [29]
miR-1246 上调 血浆 33名乳腺癌患者和37名健康对照者 灵敏度93.94%
特异度97.30%
[30]
miR-148a 下调 血清 125名乳腺癌患者和50名良性乳腺
肿瘤患者
灵敏度84.0%
特异度80.0%
[31]
miR-7641 上调 血浆 13名远处转移乳腺癌患者和15名
无远处转移乳腺癌患者
- [18]
miR-1246、miR-206、miR-24和miR-373 下调 血浆 226名乳腺癌患者和146名健康对照者 灵敏度98.0%
特异度96.0%
[32]
miR-424、miR-423、miR-660和let7-Ⅰ 上调、下调 尿液 69名乳腺癌患者和40名健康对照者 灵敏度98.6%
特异度100%
[33]
XIST 上调 血清 91名TNBC术后患者 灵敏度84.2%
特异度92.3%
[34]
H19 上调 血清 50名乳腺癌患者、50名良性乳腺肿瘤
患者和50名健康对照者
灵敏度87.0%
特异度70.6%
[35]
HOTAIR 上调 血浆 23名乳腺癌患者 - [36]
HOTAIR 上调 血清 15名手术治疗的乳腺癌患者和
15名健康对照者
AUC=0.917 8 [37]
hsa_circ_0005552、hsa_circ_0007177、
hsa_circ_0002190、hsa_circ_0001439、
hsa_circ_0000642、hsa_circ_0006404、
hsa_circ_0000267、hsa_circ_0001073和
hsa_circ_0001417
上调 血浆 144名乳腺癌患者、72名良性乳腺肿瘤
患者和43名健康对照者
AUC=0.80 [39]
has_circ_0009634、hsa_circ_0020707、
hsa_circ_0064923、hsa_circ_0104852
和hsa_circ_0087064
上调 血清 3名局限性乳腺癌患者、3名转移性乳腺癌
患者和3名匹配的健康对照者
- [40]
cirHIF1A 上调 血浆 24名乳腺癌患者和68名健康对照者 AUC=0.897 [41]
circKDM4C 下调 组织 乳腺癌患者肿瘤组织和正常组织 - [42]
exo-AnxA2 上调 血清 169名乳腺癌患者和68名健康对照者 AUC=1.000 [43]
Del-1 上调 血浆 22名乳腺癌患者 - [44]
miR-150-5p
miR-576-3p
miR -4665-5p
上调 血浆 27名乳腺癌患者和3名健康对照者 AUC=0.705
AUC=0.691
AUC=0.681
[51]
miR-188-3p、miR-501-3p、miR-502-3p、
miR-532-3p和miR-532-5p
上调 血清 204名乳腺癌患者和202名健康对照者 AUC=0.821~0.969 [52]
miR-188-3p、miR-500a-5p和miR-501-5p 上调 血浆 200名乳腺癌患者和190名健康对照者 AUC=0.805 [52]
miR-363-5p 下调 血浆 10名乳腺癌患者和10名健康对照者 AUC = 0.733~0.958 [53]
let-7b-5p、miR-106a-5p、miR-19a-3p、
miR-19b-3p、miR-25-3p、miR-425-5p、
miR-451a、miR-92a-3p、miR-93-5p、
miR-16-5p
上调 血清 216名乳腺癌患者和214名健康对照者 灵敏度91.6%
特异度91.3%
[54]
表3  小细胞外囊泡在乳腺癌中的诊断作用
方法 原理 优点 缺点 参考文献
手术治疗 切除肿瘤及周围的一些组织,尽可能保留乳房组织 较彻底地切除病灶,提高患者生存率 创伤大,恢复时间长,术后有转移和复发的风险 [57]
化学治疗 使用化学治疗药物杀灭癌细胞,达到治疗目的 有效杀灭早中期患者体内残留的癌细胞,提高治愈率,延缓肿瘤晚期患者的生存期 降低机体的免疫功能,诱发骨髓抑制,导致胃肠道不适 [58]
放射治疗 利用放射线治疗肿瘤的一种局部治疗 放射性破坏和杀死肿瘤,创伤小 对周围正常组织细胞有破坏作用,伤害皮肤,降低机体的免疫功能 [59]
表4  常用乳腺癌治疗方法优缺点比较
图3  小细胞外囊泡在乳腺癌治疗中的潜力
小细胞外囊泡货物 功能 机制 参考文献
miR-454 抑制肿瘤生长 与lncRNA XIST相互作用 [60]
HAND2-AS1 抑制TNBC发展 抑制miR-106a-5p上调 [61]
miR-424-5p 促进肿瘤细胞凋亡 增加促炎细胞因子分泌,下调PD-L1表达 [63]
miR-4516 抑制肿瘤增殖 抑制FOSL1表达 [66]
miR-Let-7a 抑制MDA-MB-231的增殖、迁移和侵袭转移 下调c-Myc表达 [65]
miR-1226-3p、miR-19a-3p和miR-19b-3p 抑制乳腺癌细胞迁移 共表达AQP5靶向miRNAs和靶向IL-4R的肽 [69]
miR-363-5p 抑制乳腺癌细胞迁移 下调PDGFB [53]
CBSA/siS100A4@Exosome 抑制TNBC的术后转移 产生基因沉寂 [70]
SNHG16 发挥免疫抑制作用 通过miR-16-5p促进TGF-β1/SMAD5通路激活,上调Vδ1 T细胞中CD73+表达 [74]
miR-159 对TNBC产生抗癌作用 和阿霉素一起沉默TCF-7基因 [73]
miR-1236 降低乳腺癌细胞对顺铂的耐药性 抑制SLC9A1表达来抑制Wnt/β-catenin通路活性 [81]
miR-423-5p 阻断乳腺癌细胞对顺铂的耐药性 下调表达 [82]
miR-567 逆转曲妥珠单抗耐药 下调表达,直接抑制ATG5表达抑制自噬 [83]
表5  小细胞外囊泡在乳腺癌中的治疗作用
[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3
[2] Liang Y R, Zhang H W, Song X J, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Seminars in Cancer Biology, 2020, 60: 14-27.
doi: S1044-579X(19)30063-X pmid: 31421262
[3] Kalluri R, McAndrews K M. The role of extracellular vesicles in cancer. Cell, 2023, 186(8): 1610-1626.
doi: 10.1016/j.cell.2023.03.010 pmid: 37059067
[4] Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nature Reviews Immunology, 2009, 9: 581-593.
doi: 10.1038/nri2567 pmid: 19498381
[5] Jeppesen D K, Fenix A M, Franklin J L, et al. Reassessment of exosome composition. Cell, 2019, 177(2): 428-445, e18.
doi: S0092-8674(19)30212-0 pmid: 30951670
[6] Pan B T, Johnstone R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 1983, 33(3): 967-978.
doi: 10.1016/0092-8674(83)90040-5 pmid: 6307529
[7] Johnstone R M, Adam M, Hammond J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry, 1987, 262(19): 9412-9420.
pmid: 3597417
[8] Pegtel D M, Gould S J. Exosomes. Annual Review of Biochemistry, 2019, 88: 487-514.
doi: 10.1146/annurev-biochem-013118-111902 pmid: 31220978
[9] Doyle L M, Wang M Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7): 727.
doi: 10.3390/cells8070727
[10] Song F T, Wang C, Wang C H, et al. Enrichment-detection integrated exosome profiling biosensors promising for early diagnosis of cancer. Analytical Chemistry, 2021, 93(11): 4697-4706.
doi: 10.1021/acs.analchem.0c05245 pmid: 33710854
[11] De Toro J, Herschlik L, Waldner C, et al. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Frontiers in Immunology, 2015, 6: 203.
doi: 10.3389/fimmu.2015.00203 pmid: 25999947
[12] Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977.
doi: 10.1126/science.aau6977
[13] Wortzel I, Dror S, Kenific C M, et al. Exosome-mediated metastasis: communication from a distance. Developmental Cell, 2019, 49(3): 347-360.
doi: S1534-5807(19)30281-3 pmid: 31063754
[14] Sharma P, Schiapparelli L, Cline H T. Exosomes function in cell-cell communication during brain circuit development. Current Opinion in Neurobiology, 2013, 23(6): 997-1004.
doi: 10.1016/j.conb.2013.08.005 pmid: 23998929
[15] Mao Y P, Zhang M T, Wang L F, et al. Role of microRNA carried by small extracellular vesicles in urological tumors. Frontiers in Cell and Developmental Biology, 2023, 11: 1192937.
doi: 10.3389/fcell.2023.1192937
[16] Witwer K W, Goberdhan D C, O’Driscoll L, et al. Updating mISEV: evolving the minimal requirements for studies of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10(14): e12182.
doi: 10.1002/jev2.v10.14
[17] Yang D B, Zhang W H, Zhang H Y, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics, 2020, 10(8): 3684-3707.
doi: 10.7150/thno.41580 pmid: 32206116
[18] Shen S J, Song Y, Zhao B, et al. Cancer-derived exosomal miR-7641 promotes breast cancer progression and metastasis. Cell Communication and Signaling, 2021, 19(1): 20.
doi: 10.1186/s12964-020-00700-z pmid: 33618729
[19] Zhang L, Li S M, Cong M H, et al. Lemon-derived extracellular vesicle-like nanoparticles block the progression of kidney stones by antagonizing endoplasmic reticulum stress in renal tubular cells. Nano Letters, 2023, 23(4): 1555-1563.
doi: 10.1021/acs.nanolett.2c05099 pmid: 36727669
[20] Liu J F, Li W Z, Bian Y P, et al. Garlic-derived exosomes regulate PFKFB 3 expression to relieve liver dysfunction in high-fat diet-fed mice via macrophage-hepatocyte crosstalk. Phytomedicine, 2023, 112: 154679.
doi: 10.1016/j.phymed.2023.154679
[21] Suharta S, Barlian A, Hidajah A C, et al. Plant-derived exosome-like nanoparticles: a concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. Journal of Food Science, 2021, 86(7): 2838-2850.
doi: 10.1111/jfds.v86.7
[22] Cao W, Chen H D, Yu Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chinese Medical Journal, 2021, 134(7): 783-791.
doi: 10.1097/CM9.0000000000001474 pmid: 33734139
[23] Zhu Z J, Chen H, Xie S, et al. Classification and reconstruction of biomedical signals based on convolutional neural network. Computational Intelligence and Neuroscience, 2022, 2022: 6548811.
[24] Demirci B Ö, Buğdaycı O, Ertas G, et al. Linear regression modeling based scoring system to reduce benign breast biopsies using multi-parametric US with color doppler and SWE. Academic Radiology, 2023, 30: S143-S153.
[25] Pesapane F, Nicosia L, Tantrige P, et al. Inter-reader agreement of breast magnetic resonance imaging and contrast-enhanced mammography in breast cancer diagnosis: a multi-reader retrospective study. Breast Cancer Research and Treatment, 2023, 202(3): 451-459.
doi: 10.1007/s10549-023-07093-w
[26] Chang J M, Yoen H. Breast biopsy and hematoma associated with antithrombotic therapy. Radiology, 2023, 306(1): 87-89.
doi: 10.1148/radiol.221871
[27] Tatischeff I. Current search through liquid biopsy of effective biomarkers for early cancer diagnosis into the rich cargoes of extracellular vesicles. International Journal of Molecular Sciences, 2021, 22(11): 5674.
doi: 10.3390/ijms22115674
[28] He B X, Zhao Z Y, Cai Q D, et al. MiRNA-based biomarkers, therapies, and resistance in cancer. International Journal of Biological Sciences, 2020, 16(14): 2628-2647.
doi: 10.7150/ijbs.47203 pmid: 32792861
[29] Chen W W, Cao R K, Su W T, et al. Simple and fast isolation of circulating exosomes with a chitosan modified shuttle flow microchip for breast cancer diagnosis. Lab on a Chip, 2021, 21(9): 1759-1770.
doi: 10.1039/d0lc01311k pmid: 33710183
[30] Chen Y, Zhai L Y, Zhang L M, et al. Breast cancer plasma biopsy by in situ determination of exosomal microRNA-1246 with a molecular beacon. The Analyst, 2021, 146(7): 2264-2276.
doi: 10.1039/D0AN02224A
[31] Li D, Wang J, Ma L J, et al. Identification of serum exosomal miR-148a as a novel prognostic biomarker for breast cancer. European Review for Medical and Pharmacological Sciences, 2020, 24(13): 7303-7309.
doi: 21889 pmid: 32706068
[32] Jang J Y, Kim Y S, Kang K N, et al. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Molecular and Clinical Oncology, 2021, 14(2): 31.
doi: 10.3892/mco.2020.2193 pmid: 33414912
[33] Hirschfeld M, Rücker G, Weiβ D, et al. Urinary exosomal microRNAs as potential non-invasive biomarkers in breast cancer detection. Molecular Diagnosis & Therapy, 2020, 24(2): 215-232.
[34] Lan F M, Zhang X D, Li H B, et al. Serum exosomal lncRNA XIST is a potential non-invasive biomarker to diagnose recurrence of triple-negative breast cancer. Journal of Cellular and Molecular Medicine, 2021, 25(16): 7602-7607.
doi: 10.1111/jcmm.16009 pmid: 33949761
[35] Zhong G B, Wang K Q, Li J W, et al. Determination of serum exosomal H19 as a noninvasive biomarker for breast cancer diagnosis. OncoTargets and Therapy, 2020, 13: 2563-2571.
doi: 10.2147/OTT.S243601 pmid: 32273726
[36] Wang Y L, Liu L C, Hung Y, et al. Long non-coding RNA HOTAIR in circulatory exosomes is correlated with ErbB2/HER2 positivity in breast cancer. The Breast, 2019, 46: 64-69.
doi: 10.1016/j.breast.2019.05.003
[37] Tang S C, Zheng K, Tang Y Y, et al. Overexpression of serum exosomal HOTAIR is correlated with poor survival and poor response to chemotherapy in breast cancer patients. Journal of Biosciences, 2019, 44(2): 37.
doi: 10.1007/s12038-019-9861-y
[38] Gopikrishnan M, R H C, R G, et al. Therapeutic and diagnostic applications of exosomal circRNAs in breast cancer. Functional & Integrative Genomics, 2023, 23(2): 184.
[39] Lin L, Cai G X, Zhai X M, et al. Plasma-derived extracellular vesicles circular RNAs serve as biomarkers for breast cancer diagnosis. Frontiers in Oncology, 2021, 11: 752651.
doi: 10.3389/fonc.2021.752651
[40] Wang J Y, Zhang Q, Zhou S Y, et al. Circular RNA expression in exosomes derived from breast cancer cells and patients. Epigenomics, 2019, 11(4): 411-421.
doi: 10.2217/epi-2018-0111 pmid: 30785332
[41] Chen T, Wang X L, Li C, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene, 2021, 40(15): 2756-2771.
doi: 10.1038/s41388-021-01739-z pmid: 33714984
[42] Liang Y R, Song X J, Li Y M, et al. CircKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer. Oncogene, 2019, 38(42): 6850-6866.
doi: 10.1038/s41388-019-0926-z pmid: 31406252
[43] Chaudhary P, Gibbs L D, Maji S, et al. Serum exosomal-annexin A 2 is associated with African-American triple-negative breast cancer and promotes angiogenesis. Breast Cancer Research, 2020, 22(1): 11.
doi: 10.1186/s13058-020-1251-8 pmid: 31992335
[44] Lee S J, Lee J, Jung J H, et al. Exosomal del-1 as a potent diagnostic marker for breast cancer: prospective cohort study. Clinical Breast Cancer, 2021, 21(6): e748-e756.
doi: 10.1016/j.clbc.2021.02.002 pmid: 33722523
[45] Mei K N, Yan T H, Wang Y, et al. Magneto-nanomechanical array biosensor for ultrasensitive detection of oncogenic exosomes for early diagnosis of cancers. Small, 2023, 19(9): e2205445.
[46] Zhou Y, Xu H Y, Wang H, et al. Detection of breast cancer-derived exosomes using the horseradish peroxidase-mimicking DNAzyme as an aptasensor. The Analyst, 2019, 145(1): 107-114.
doi: 10.1039/C9AN01653H
[47] Wang H Z, He D G, Wan K J, et al. In situ multiplex detection of serum exosomal microRNAs using an all-in-one biosensor for breast cancer diagnosis. The Analyst, 2020, 145(9): 3289-3296.
doi: 10.1039/D0AN00393J
[48] Qin X L, Xiang Y H, Li N, et al. Simultaneous detection of cancerous exosomal miRNA-21 and PD-L 1 with a sensitive dual-cycling nanoprobe. Biosensors and Bioelectronics, 2022, 216: 114636.
doi: 10.1016/j.bios.2022.114636
[49] Xie Y, Su X M, Wen Y, et al. Artificial intelligent label-free SERS profiling of serum exosomes for breast cancer diagnosis and postoperative assessment. Nano Letters, 2022, 22(19): 7910-7918.
doi: 10.1021/acs.nanolett.2c02928
[50] Li G H, Zhu N H, Zhou J, et al. A magnetic surface-enhanced Raman scattering platform for performing successive breast cancer exosome isolation and analysis. Journal of Materials Chemistry B, 2021, 9(11): 2709-2716.
doi: 10.1039/d0tb02894k pmid: 33683256
[51] Wu H M, Wang Q M, Zhong H, et al. Differentially expressed microRNAs in exosomes of patients with breast cancer revealed by next-generation sequencing. Oncology Reports, 2020, 43(1): 240-250.
[52] Zou X, Li M H, Huang Z B, et al. Circulating miR-532- 502 cluster derived from chromosome X as biomarkers for diagnosis of breast cancer. Gene, 2020, 722: 144104.
doi: 10.1016/j.gene.2019.144104
[53] Wang X, Qian T Y, Bao S Q, et al. Circulating exosomal miR-363-5p inhibits lymph node metastasis by downregulating PDGFB and serves as a potential noninvasive biomarker for breast cancer. Molecular Oncology, 2021, 15(9): 2466-2479.
doi: 10.1002/1878-0261.13029 pmid: 34058065
[54] Zou X, Xia T S, Li M H, et al. MicroRNA profiling in serum: potential signatures for breast cancer diagnosis. Cancer Biomarkers, 2021, 30(1): 41-53.
doi: 10.3233/CBM-201547
[55] Fan Y, Wang J, Jin W, et al. CircNR3C 2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Molecular Cancer, 2021, 20(1): 25.
doi: 10.1186/s12943-021-01321-x pmid: 33530981
[56] 毛露珈, 史恩宇, 王瀚平, 等. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展. 中国生物工程杂志, 2022, 42(5): 100-105.
Mao L J, Shi E Y, Wang H P, et al. Research progress of bacterial outer membrane vesicles in anti-tumor therapy. China Biotechnology, 2022, 42(5): 100-105.
[57] Zhang J Q, Dos Anjos C H, Sevilimedu V, et al. Association of moderate-risk breast cancer genes with contralateral prophylactic mastectomy and bilateral disease. Annals of Surgical Oncology, 2023, 30(12): 6990-6999.
doi: 10.1245/s10434-023-14141-8 pmid: 37661222
[58] He J, Yu Y R, He Y L, et al. Chemotherapy induces breast cancer stem cell enrichment through repression of glutathione S-transferase Mu. Genes & Diseases, 2024, 11(2): 528-531.
[59] Diao K, Lei X D, He W G, et al. Patient-reported quality of life after breast-conserving surgery with radiotherapy versus mastectomy and reconstruction. Annals of Surgery, 2023, 278(5): e1096-e1102.
doi: 10.1097/SLA.0000000000005920
[60] Li X H, Hou L L, Yin L, et al. LncRNA XIST interacts with miR-454 to inhibit cells proliferation, epithelial mesenchymal transition and induces apoptosis in triple-negative breast cancer. Journal of Biosciences, 2020, 45(1): 45.
doi: 10.1007/s12038-020-9999-7
[61] Xing L, Tang X L, Wu K K, et al. LncRNA HAND2-AS 1 suppressed the growth of triple negative breast cancer via reducing secretion of MSCs derived exosomal miR-106a-5p. Aging, 2020, 13(1): 424-436.
doi: 10.18632/aging.v13i1
[62] Yang P X, Cao X J, Cai H L, et al. The exosomes derived from CAR-T cell efficiently target mesothelin and reduce triple-negative breast cancer growth. Cellular Immunology, 2021, 360: 104262.
doi: 10.1016/j.cellimm.2020.104262
[63] Zhou Y Y, Yamamoto Y, Takeshita F, et al. Delivery of miR-424-5p via extracellular vesicles promotes the apoptosis of MDA-MB-231 TNBC cells in the tumor microenvironment. International Journal of Molecular Sciences, 2021, 22(2): 844.
doi: 10.3390/ijms22020844
[64] Guo J, Duan Z J, Zhang C, et al. Mouse 4T1 breast cancer cell-derived exosomes induce proinflammatory cytokine production in macrophages via miR-183. Journal of Immunology, 2020, 205(10): 2916-2925.
doi: 10.4049/jimmunol.1901104 pmid: 32989094
[65] Du J, Fan J J, Dong C, et al. Inhibition effect of exosomes-mediated Let-7a on the development and metastasis of triple negative breast cancer by down-regulating the expression of c-Myc. European Review for Medical and Pharmacological Sciences, 2019, 23(12): 5301-5314.
doi: 18197 pmid: 31298382
[66] Kim J E, Kim B G, Jang Y, et al. The stromal loss of miR-4516 promotes the FOSL1-dependent proliferation and malignancy of triple negative breast cancer. Cancer Letters, 2020, 469: 256-265.
doi: S0304-3835(19)30542-7 pmid: 31672492
[67] Wang H B, Wei H, Wang J S, et al. MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer. Molecular Therapy - Nucleic Acids, 2020, 19: 654-667.
doi: 10.1016/j.omtn.2019.11.024
[68] Nelson R A, Guye M L, Luu T, et al. Survival outcomes of metaplastic breast cancer patients: results from a US population-based analysis. Annals of Surgical Oncology, 2015, 22(1): 24-31.
[69] Park E J, Jung H J, Choi H J, et al. Exosomes co-expressing AQP5-targeting miRNAs and IL-4 receptor-binding peptide inhibit the migration of human breast cancer cells. FASEB Journal, 2020, 34(2): 3379-3398.
doi: 10.1096/fsb2.v34.2
[70] Zhao L W, Gu C Y, Gan Y, et al. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. Journal of Controlled Release, 2020, 318: 1-15.
doi: S0168-3659(19)30723-0 pmid: 31830541
[71] 吕慧中, 赵晨辰, 朱链, 等. 外泌体靶向递药在肿瘤治疗中的进展. 中国生物工程杂志, 2021, 41(5): 79-86.
Lv H Z, Zhao C C, Zhu L, et al. Progress of using exosome for drug targeted delivery in tumor therapy. China Biotechnology, 2021, 41(5): 79-86.
[72] Liang Y J, Duan L, Lu J P, et al. Engineering exosomes for targeted drug delivery. Theranostics, 2021, 11(7): 3183-3195.
doi: 10.7150/thno.52570 pmid: 33537081
[73] Gong C N, Tian J, Wang Z, et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. Journal of Nanobiotechnology, 2019, 17(1): 93.
doi: 10.1186/s12951-019-0526-7 pmid: 31481080
[74] Ni C, Fang Q Q, Chen W Z, et al. Breast cancer-derived exosomes transmit lncRNA SNHG 16 to induce CD73+γδ1 Treg cells. Signal Transduction and Targeted Therapy, 2020, 5(1): 41.
doi: 10.1038/s41392-020-0129-7
[75] Lu Y H, Chen L, Li L D, et al. Exosomes derived from brain metastatic breast cancer cells destroy the blood-brain barrier by carrying lncRNA GS1-600G8.5. BioMed Research International, 2020, 2020: 7461727.
[76] Wang Y Q, Wang S R, Chen A P, et al. Efficient exosome subpopulation isolation and proteomic profiling using a Sub-ExoProfile chip towards cancer diagnosis and treatment. The Analyst, 2022, 147(19): 4237-4248.
doi: 10.1039/D2AN01268E
[77] Li S, Wu Y J, Ding F, et al. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale, 2020, 12(19): 10854-10862.
doi: 10.1039/d0nr00523a pmid: 32396590
[78] Wang L, Xie Y F, Ahmed K A, et al. Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice. Breast Cancer Research and Treatment, 2013, 140(2): 273-284.
doi: 10.1007/s10549-013-2626-7 pmid: 23881522
[79] Dong X L, Bai X P, Ni J, et al. Exosomes and breast cancer drug resistance. Cell Death & Disease, 2020, 11(11): 987.
[80] Chinnappan M, Srivastava A, Amreddy N, et al. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Letters, 2020, 486: 18-28.
doi: S0304-3835(20)30232-9 pmid: 32439419
[81] Jia Z M, Zhu H M, Sun H G, et al. Adipose mesenchymal stem cell-derived exosomal microRNA-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9A1 and the Wnt/β-catenin signaling. Cancer Management and Research, 2020, 12: 8733-8744.
doi: 10.2147/CMAR.S270200 pmid: 33061571
[82] Wang B, Zhang Y Z, Ye M N, et al. Cisplatin-resistant MDA-MB-231 cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent manner. Current Drug Metabolism, 2019, 20(10): 804-814.
doi: 10.2174/1389200220666190819151946 pmid: 31424364
[83] Han M L, Hu J G, Lu P W, et al. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG 5 in breast cancer. Cell Death & Disease, 2020, 11(1): 43.
[84] 常磊, 卓至丽, 卢雯平, 等. 疏肝益肾方治疗乳腺癌内分泌耐药的临床观察及对外泌体miR-221的影响. 北京中医药大学学报, 2022, 45(12): 1295-1302.
Chang L, Zhuo Z L, Lu W P, et al. Clinical observation of Shugan Yishen Recipe on the patients of endocrine resistance in breast cancer and effects on exosome miR-221. Journal of Beijing University of Traditional Chinese Medicine, 2022, 45(12): 1295-1302.
[85] Dou D W, Ren X Y, Han M L, et al. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Frontiers in Immunology, 2020, 11: 2026.
doi: 10.3389/fimmu.2020.02026 pmid: 33162971
[86] Liu J H, Zhu S L, Tang W, et al. Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p. Cancer Cell International, 2021, 21(1): 55.
doi: 10.1186/s12935-020-01659-0 pmid: 33451320
[87] Chen W X, Wang D D, Zhu B, et al. Exosomal miR-222 from adriamycin-resistant MCF-7 breast cancer cells promote macrophages M2 polarization via PTEN/Akt to induce tumor progression. Aging, 2021, 13(7): 10415-10430.
doi: 10.18632/aging.v13i7
[1] 叶灏鑫,王晓旭,李明霏,王宇. 外泌体与肺纤维化研究进展*[J]. 中国生物工程杂志, 2024, 44(4): 67-75.
[2] 刘秀盈, 刘静静, 崔鑫铭, 于梦圆, 史渊源, 王建勋. 细胞免疫治疗载体技术的现状与展望*[J]. 中国生物工程杂志, 2024, 44(2/3): 142-152.
[3] 樊宇钦, 黎智康, 梁至轩, 赵紫涵, 谢秋玲. 高效包载酪氨酸羟化酶mRNA外泌体的制备*[J]. 中国生物工程杂志, 2024, 44(2/3): 69-75.
[4] 姜嘉烨, 吴娅芳, 黄志强, 王英林, 于影, 谷志涛, 刘箐. 电化学生物传感器在乳腺癌肿瘤标志物检测中的研究进展*[J]. 中国生物工程杂志, 2023, 43(7): 101-113.
[5] 郝东霞, 田梦园, 刘洋, 李星, 张媛. 乳外泌体的基本性质及其应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 26-42.
[6] 项建, 叶邦策, 尹斌成. 功能化外泌体重编程免疫细胞与肿瘤细胞之间靶向识别*[J]. 中国生物工程杂志, 2023, 43(10): 1-9.
[7] 邓思雨, 梁冰, 魏薇, 王孟娜, 曹友德. miR-34a-5p对三阴性乳腺癌细胞的影响及相关机制研究*[J]. 中国生物工程杂志, 2023, 43(1): 18-26.
[8] 梁帆,程洪伟,张俊河. 人源性食管癌异种移植模型的建立及应用进展*[J]. 中国生物工程杂志, 2022, 42(8): 74-84.
[9] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[10] 王璐,陈梦丽,何芳,项建,尹斌成,叶邦策. 工程化外泌体介导巨噬细胞清除肿瘤外泌体*[J]. 中国生物工程杂志, 2022, 42(6): 1-11.
[11] 毕煦昆,郭成龙,赵建栋,任行全,柴威涛. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展*[J]. 中国生物工程杂志, 2022, 42(10): 70-79.
[12] 胡凯,胡静,孙子久,刘施妍,廖德宇,余伙梅,张彦. UPF1在乳腺癌细胞中的表达与作用的研究*[J]. 中国生物工程杂志, 2022, 42(1/2): 58-71.
[13] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[14] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[15] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.