Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (4): 33-42    DOI: 10.13523/j.cb.2308026
技术与方法     
重组人α1-微球蛋白的毕赤酵母发酵与纯化工艺优化*
唐丹宁1,罗安1,王腾1,高建梅2,蔡富强2,温振国1,贾兆君1,**()
1 北京石油化工学院新材料与化工学院 恩泽生物质精细化工北京市重点实验室 北京 102617
2 北京利德曼生化股份有限公司 北京 100176
Optimization of the Fermentation and Purification Process of Recombinant Human α1-Microglobulin by Pichia pastoris
TANG Danning1,LUO An1,WANG Teng1,GAO Jianmei2,CAI Fuqiang2,WEN Zhenguo1,JIA Zhaojun1,**()
1 Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2 Beijing Leadman Biochemistry Co., Ltd., Beijing 100176, China
 全文: PDF(1503 KB)   HTML
摘要:

目的:对肾脏损伤指标蛋白人α1-微球蛋白(alpha 1-microglobulin,A1M)的巴斯德毕赤酵母(Pichia pastoris)发酵与纯化工艺进行优化,实现高纯度、高亲和性重组A1M的克级制备。方法:利用1 L摇瓶培养体系单因素实验优化A1M发酵最适pH,随后进行5 L规模化高密度发酵,优化关键补料点及发酵时间;根据A1M抗原特性建立蛋白纯化工艺并进行N-糖基化鉴定和纯度鉴定;制备A1M免疫亲和柱并进行载量评估。结果:重组人A1M毕赤酵母摇瓶发酵最适初始pH 6.0,1 L摇瓶培养体系中表达水平达888 mg/L,且糖基化程度相对最低;5 L规模发酵的48~120 h采用溶氧(dissolved oxygen,DO)≥30%反向关联甲醇补料4~6 mL/(h·L),可有效控制DO核心区>20%;发酵48、72和96 h为关键补料点,表达水平为12.5 g/L,发酵58~78 h时空收率可达160~210 mg/(h·L),5 L罐发酵120 h批量达49 g;选用超滤浓缩、阳离子交换层析和脱盐层析柱建立A1M纯化工艺,总收率为18%;A1M抗原亲和柱偶联率达96%,偶联密度为2.46 mg/mL,对A1M绵羊多抗的载量为37 mg/mL。结论:成功建立重组人A1M抗原5 L规模的酵母发酵及纯化工艺,实现高纯度并具有免疫亲和力的A1M抗原的克级制备。

关键词: α1-微球蛋白毕赤酵母高密度发酵糖基化修饰    
Abstract:

Objective: To optimize the fermentation and purification process of human α1- microglobulin (A1M), an index protein of kidney injury, in order to prepare recombinant A1M with high purity and high affinity in gram scale. Methods: The optimal pH of A1M fermentation was optimized by a single factor experiment in a 1 L shake flask culture system, followed by a 5 L large-scale fermentation, and the key feeding points and fermentation time were optimized. According to the characteristics of A1M antigen, the protein purification process was established, and N-glycosylation and purity identification were carried out. Finally, A1M immunoaffinity column was prepared and its loading was evaluated. Results: The optimal initial pH of human recombinant A1M Pichia pastoris was 6.0, the expression level reached 888 mg/L in 1 L shake flask culture system, and the degree of glycosylation was relatively lowest. During the 48~120 h of 5 L scale fermentation, DO≥30% reverse correlation methanol was used to feed 4 ~ 6 mL/(h·L-1), which can effectively control the core area of DO>20%. The 48th, 72nd and 96th hours of fermentation were the key feeding points, and the expression level was 12.5 g/L. The space-time yield of fermentation from 58th to 78th hours was 160 ~ 210 mg/(L·h), and the batch of fermentation in a 5-L tank for 120 h was 49 g. The purification process of A1M was established by ultrafiltration concentration, cation exchange chromatography and desalting chromatography column, and the total yield was 18%. The coupling rate of A1M antigen affinity column was 96%, the coupling density was 2.46 mg/mL, and the loading capacity of A1M sheep polyclonal antibody was 37 mg/mL. Conclusion: The yeast fermentation and purification process of recombinant human A1M antigen in 5 L scale was successfully established, and the high purity and high affinity A1M antigen in gram scale was prepared.

Key words: α1-Microglobulin    Pichia pastoris    High density fermentation    Glycosylation modification
收稿日期: 2023-08-18 出版日期: 2024-04-30
ZTFLH:  Q815  
基金资助: * 北京市教育委员会科学研究计划(KM202210017010);北京市教育委员会科学研究计划(KZ202210017025)
通讯作者: ** 电子信箱:jiazj@bipt.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐丹宁
罗安
王腾
高建梅
蔡富强
温振国
贾兆君

引用本文:

唐丹宁, 罗安, 王腾, 高建梅, 蔡富强, 温振国, 贾兆君. 重组人α1-微球蛋白的毕赤酵母发酵与纯化工艺优化*[J]. 中国生物工程杂志, 2024, 44(4): 33-42.

TANG Danning, LUO An, WANG Teng, GAO Jianmei, CAI Fuqiang, WEN Zhenguo, JIA Zhaojun. Optimization of the Fermentation and Purification Process of Recombinant Human α1-Microglobulin by Pichia pastoris. China Biotechnology, 2024, 44(4): 33-42.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2308026        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I4/33

图1  A1M试剂盒定标与不同pH下A1M表达水平的测量值 A:A1M校准品反应曲线 B:A1M校准曲线 C:初始pH对A1M表达水平的影响
图2  不同pH下A1M糖基化水平变化(A)与A1M/CSF比值(B)
图3  5 L发酵罐发酵曲线
图4  5 L罐发酵A1M表达水平与SDS-PAGE检测 A:5 L罐发酵A1M表达水平实时变化 B:SDS-PAGE检测各时间点A1M抗原的表达
图5  离子交换层析图谱
图6  电泳检测SP柱纯化的A1M抗原
图7  A1M脱盐图谱
样品 A1M/g 收率/% A1M/CSF 样品颜色
发酵上清 49.7 100 7.33 绿色
10 kDa超滤 47.1 95 8.79 墨绿乳浊
0% B1流穿 27.6 56 11.68 灰绿色乳浊
20% B1-1 0.4 0 6.3 近无色
20% B1-2 2.2 4 4.9 墨绿清亮
100% B2 9.4 19 5.5 墨绿清亮
100% B3 1.4 3 4.0 浅绿清亮
1 mol/L NaOH 0.05 0 2.9 浅绿色
脱盐 9.1 18 5.7 墨绿清亮
表1  纯化过程数据统计
图8  Endo Hf酶切鉴定100% B2(A)与100% B3(B)洗脱的A1M抗原
图9  A1M抗原亲和柱纯化A1M多抗及其鉴定 A:A1M抗原亲和柱纯化A1M羊多抗图谱 B:SDS-PAGE检测亲和纯化后的羊抗A1M多抗
样品 多抗体积
/mL
多抗质量浓度
/(mg·mL-1)
多抗总量
/mg
填料载量
/(mg·mL-1)
洗脱峰1 920 12.47 11 472 40
洗脱峰2 1 188 8.22 9765 34
表2  亲和柱载量结果
[1] Bergwik J, Kristiansson A, Allhorn M, et al. Structure, functions, and physiological roles of the lipocalin α1-microglobulin (A1M). Frontiers in Physiology, 2021, 12: 645650.
doi: 10.3389/fphys.2021.645650
[2] Kristiansson A, Ahlstedt J, Holmqvist B, et al. Protection of kidney function with human antioxidation protein α1-microglobulin in a mouse 177Lu-DOTATATE radiation therapy model. Antioxidants & Redox Signaling, 2019, 30(14): 1746-1759.
[3] Kristiansson A, Bergwik J, Alattar A G, et al. Human radical scavenger α1-microglobulin protects against hemolysis in vitro and α1-microglobulin knockout mice exhibit a macrocytic anemia phenotype. Free Radical Biology and Medicine, 2021, 162: 149-159.
doi: 10.1016/j.freeradbiomed.2020.02.018 pmid: 32092412
[4] Kristiansson A, Davidsson S, Johansson M E, et al. α1-Microglobulin (A1M) protects human proximal tubule epithelial cells from heme-induced damage in vitro. International Journal of Molecular Sciences, 2020, 21(16): 5825.
doi: 10.3390/ijms21165825
[5] Gunnarsson R, Åkerström B, Hansson S R, et al. Recombinant α-1-microglobulin: a potential treatment for preeclampsia. Drug Discovery Today, 2017, 22(4): 736-743.
doi: S1359-6446(16)30482-2 pmid: 27988357
[6] Alayash A I. Blood substitutes: why haven’t we been more successful. Trends in Biotechnology, 2014, 32(4): 177-185.
doi: 10.1016/j.tibtech.2014.02.006 pmid: 24630491
[7] Kao S S T, Bassiouni A, Ramezanpour M, et al. Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2021, 147(1): 168-178.
doi: 10.1016/j.jaci.2020.06.037
[8] 陆学军, 徐国宾, 夏铁安, 等. 人α1-微球蛋白基因的质粒载体构建和表达. 中国实验诊断学, 2005, 9(4): 531-534.
Lu X J, Xu G B, Xia T A, et al. Construction and expression of the plasmid vector of the human α1-microglobulin in escharichia coli. Chinese Journal of Laboratory Diagnosis, 2005, 9(4): 531-534.
[9] Åkerström B, Rosenlöf L, Hägerwall A, et al. rA1M-035, a physicochemically improved human recombinant α1-microglobulin, has therapeutic effects in rhabdomyolysis-induced acute kidney injury. Antioxidants & Redox Signaling, 2019, 30(4): 489-504.
[10] Wester L, Johansson M U, Åkerström B. Physicochemical and biochemical characterization of human α1-microglobulin expressed in baculovirus- infected insect cells. Protein Expression and Purification, 1997, 11(1): 95-103.
pmid: 9325144
[11] Åkerström B, Bratt T, Enghild J J. Formation of the α1-microglobulin chromophore in mammalian and insect cells: a novel post-translational mechanism. FEBS Letters, 1995, 362(1): 50-54.
doi: 10.1016/0014-5793(95)00206-O
[12] Carlsson M L R, Kristiansson A, Bergwik J, et al. Expression, purification and initial characterization of functional α1-microglobulin (A1M) in Nicotiana benthamiana. Frontiers in Plant Science, 2020, 11: 593773.
doi: 10.3389/fpls.2020.593773
[13] Karbalaei M, Rezaee S A, Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 2020, 235(9): 5867-5881.
doi: 10.1002/jcp.29583 pmid: 32057111
[14] Cos O, Ramón R, Montesinos J L, et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories, 2006, 5: 17.
doi: 10.1186/1475-2859-5-17
[15] 韩铭海, 王未鲜, 于志海. N-糖基化修饰对异源蛋白在毕赤酵母中表达的作用研究进展. 安徽农业科学, 2022, 50(11): 14-17.
Han M H, Wang W X, Yu Z H. Research progress on the effect of N-glycosylation on production of heterologous proteins in Pichia pastoris. Journal of Anhui Agricultural Sciences, 2022, 50(11): 14-17.
[16] Wang L X. Chemoenzymatic synthesis of glycopeptides and glycoproteins through endoglycosidase-catalyzed transglycosylation. Carbohydrate Research, 2008, 343(10-11): 1509-1522.
doi: 10.1016/j.carres.2008.03.025
[17] 谈春荣, 徐国宾, 夏铁安. 重组人α1-微球蛋白在毕赤酵母中的高效分泌性表达. 中华检验医学杂志, 2006, 29(8): 736-739.
Tan C R, Xu G B, Xia T A. Secreted expression and purification of recombinant human α1-microglobulin in Pichia pastoris. Chinese Journal of Laboratory Medicine, 2006, 29(8): 736-739.
[18] Gao L, Jiang Y, Hong K, et al. Glycosylation of cellulase: a novel strategy for improving cellulase. Critical Reviews in Biotechnology, 2023, 2: 1-11.
doi: 10.3109/07388558409084661
[19] 殷世清, 姜寿俊, 肖娜, 等. 毕赤酵母高密度发酵过程中色素的去除方法: 中国, CN113563413A. 2021-10-29[2023-08-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAyMTEwOTQ0Nzg4LjEaCG1vMjcycG41.
Yin S Q, Jiang S J, Xiao N, et al. Removal method of pigment in high-density fermentation of Pichia pastoris: Chinese, CN113563413A. 2021-10-29[2023-08-17]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESEENOMjAyMTEwOTQ0Nzg4LjEaCG1vMjcycG41.
[1] 于璐,胡暄,张小鹃,牛安娜,张晓鹏. 功能性新型冠状病毒RBD结构域在毕赤酵母表面的展示*[J]. 中国生物工程杂志, 2022, 42(6): 30-38.
[2] 吴琼,赵昕,杜玉瑶,毛淑红. 细胞色素P450还原酶与CYP17的共表达及其功能分析*[J]. 中国生物工程杂志, 2022, 42(10): 1-8.
[3] 李丁,李兰,安允飞,毕振威,于晓明,陈瑾,郑其升. 联合策略优化犬α干扰素的酵母表达*[J]. 中国生物工程杂志, 2022, 42(1/2): 88-95.
[4] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[5] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[6] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[7] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[8] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[9] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[10] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[11] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[12] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[13] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[14] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[15] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.