Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (4): 76-87    DOI: 10.13523/j.cb.2308020
综述     
MXene水凝胶在皮肤创面中的应用研究*
何梦君1,2,王淞2,钱卫3,徐凯1,2,**()
1 武汉科技大学医学院 武汉 430065
2 中部战区总医院 武汉 430070
3 陆军军医大学西南医院烧伤研究所 创伤、烧伤和合并伤国家重点实验室 重庆市疾病蛋白质组学重点实验室 重庆 400038
Recent Advances in MXene Hydrogels for Skin Wound Healing
HE Mengjun1,2,WANG Song2,QIAN Wei3,XU Kai1,2,**()
1 Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
2 General Hospital of Central Theater Command, Wuhan 430070, China
3 Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury,Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing 400038, China
 全文: PDF(1962 KB)   HTML
摘要:

水凝胶因其能够保持湿润的伤口环境、模仿细胞外基质、封装和输送药物及纳米颗粒并减轻伤口疼痛的特性,被广泛应用于皮肤创面的治疗。然而,传统水凝胶的抗菌和抗炎能力有限,对于高度炎症或微生物污染的伤口(如糖尿病性创伤和严重感染)的治疗效果欠佳。近年来,研究人员开始探索将MXene纳米材料与水凝胶结合应用于创面治疗。MXene是一种二维层状纳米材料,因其卓越的抗菌、抗炎、抗氧化、药物输送和导电性能而广泛被应用于皮肤创面治疗。MXene与水凝胶结合可以有效控制创面感染、清除活性氧并加速创面组织的再生。综述MXene水凝胶在创面愈合方面的最新研究进展,探讨所面临的挑战和未来发展前景。

关键词: MXene水凝胶创面愈合抗炎抗菌    
Abstract:

Hydrogels have emerged as a promising treatment for skin wounds due to their ability to maintain a moist wound environment, mimic the extracellular matrix, encapsulate and deliver drugs and nanoparticles, and relieve pain. However, conventional hydrogels may not be effective for wounds with high levels of inflammation or microbial contamination, such as diabetic wounds and severe infections, due to their limited antibacterial and anti-inflammatory properties. Researchers have recently explored the potential of combining hydrogels with MXene nanomaterials to address these challenges. MXene is a two-dimensional layered nanomaterial that is widely employed in skin wound treatment due to its exceptional antibacterial, anti-inflammatory, antioxidant, drug delivery, and conductive properties. Combining MXene with hydrogel has effectively controlled wound infection, removed reactive oxygen species, and accelerated wound tissue regeneration. Furthermore, this combination can enhance the tissue adhesion and stability of MXene while reducing potential side effects associated with systemic administration of MXene. However, a comprehensive review of the MXene hydrogel as a wound dressing is still lacking. This review summarizes the latest research progress on MXene hydrogels for wound healing and discusses their challenges and prospects.

Key words: MXene    Hydrogel    Wound healing    Antibacterial    Anti-inflammatory
收稿日期: 2023-08-14 出版日期: 2024-04-30
ZTFLH:  Q81  
基金资助: * 国家自然科学基金(82102340)
通讯作者: ** 电子信箱:304310404@qq.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何梦君
王淞
钱卫
徐凯

引用本文:

何梦君, 王淞, 钱卫, 徐凯. MXene水凝胶在皮肤创面中的应用研究*[J]. 中国生物工程杂志, 2024, 44(4): 76-87.

HE Mengjun, WANG Song, QIAN Wei, XU Kai. Recent Advances in MXene Hydrogels for Skin Wound Healing. China Biotechnology, 2024, 44(4): 76-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2308020        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I4/76

图1  MXene水凝胶促进创面愈合的机制 A:MXene水凝胶敷料治疗促进创面愈合的策略:杀灭感染创面上的病原菌,清除创面产生的ROS,调节创面的免疫微环境 B:通过将基于MXene的水凝胶应用于创面,水凝胶能够消除病原菌、清除ROS、促进血管生成,将M1巨噬细胞极化为M2巨噬细胞
分类 水凝胶名称 优点 参考文献
天然水凝胶 海藻酸钠 优良的生物相容性、无毒性、亲水性和止血性 [22]
壳聚糖 优良的生物相容性、抗菌性、细胞黏附性、透氧性,无毒且可降解性 [23]
明胶 优良的生物相容性、高生物活性、低免疫原性、可降解性和低成本 [24]
透明质酸 优良的生物相容性、较好的降解性、高亲水保湿性,调节血管通透性 [25]
葡聚糖 优良的生物相容性、无毒性、吸水性、抗菌性 [26]
合成水凝胶 聚乙二醇 良好的生物相容性、机械性能和无毒性 [27]
聚乙烯醇 良好的生物相容性、高水溶性、保湿性、抗蛋白质吸附和抗黏附性 [28]
聚乙烯吡咯烷酮 良好的生物相容性、吸水性、低毒性和稳定性 [29]
聚N-异丙基丙烯酰胺 良好的生物相容性、温敏性 [30]
表1  典型的天然水凝胶和合成水凝胶
图2  MXene结构示意图、剥离过程及扫描电镜图[48] A:MAX相的结构示意图 B:MAX剥离的结构示意图 C:(a)HF蚀刻后Ti3C2 MXene的SEM图像;(b)两步剥离后Ti3C2纳米片的TEM图像
组成成分 策略 主要功能 参考文献
MXene-阿莫西林-聚乙烯醇纳米纤维膜 光热治疗与药物结合 作为阿莫西林和MXene共同负载的物理屏障,表现出高抗菌性能以及加速伤口愈合的能力 [49]
肌肉启发的MXene/聚乙烯醇水凝胶 光热治疗 基于MXene的水凝胶可抑制细菌感染且不会产生耐药性;不仅具有优异的机械性能(应力高达0.5 MPa,应变高达800%),而且可用于NIR激光下感染部位的局部热疗 [50]
基于Ti3C2Tx MXene纳米片的支架 电导率、抗菌活性、止血能力 HPEM支架通过高效的抗炎作用明显加速了MRSA感染的伤口愈合(伤口愈合率为96.31%);增强了正常皮肤细胞的增殖,毒性可以忽略不计 [51]
壳聚糖-透明质酸水凝胶@Ti3C2Tx MXene纳米复合材料 光热治疗 说明了针对大肠杆菌、金黄色葡萄球菌和芽孢杆菌的抗菌性能 [52]
Nb2C MXene钛板(Nb2C@TP)-基底植入物 光热治疗、抗氧化剂 Nb2C@钛板医用植入物可以通过清除感染性微环境中过量的活性氧来减轻促炎反应 [53]
Ti3C2Tx MXene纺织物 电热响应 MXene的类金属导电性使织物具有出色的焦耳热效应,可以有效杀灭感染创面的细菌 [54]
(丙烯酸-甲基丙烯酰胺-多巴胺)共聚物-Ti3C2Tx MXene 抗氧化剂 凝胶具有多种功能,如促进物质运输、抗菌和活性氧清除 [55]
表2  MXene复合材料在创面治疗的应用
图3  基于MXene载药水凝胶治疗创面的示意图[59]
图4  水凝胶促进创面愈合示意图及创面的愈合情况[48] A:HA-DA/MXene@PDA水凝胶在感染的糖尿病创面愈合中的机制 B:不同水凝胶处理的创面在第1、3、6和9天的照片 C:DHE探针检测创面中ROS含量
[1] Hu Z C, Lu J Q, Zhang T W, et al. Piezoresistive MXene/Silk fibroin nanocomposite hydrogel for accelerating bone regeneration by re-establishing electrical microenvironment. Bioactive Materials, 2023, 22: 1-17.
doi: 10.1016/j.bioactmat.2022.08.025
[2] Obagi Z, Damiani G, Grada A, et al. Principles of wound dressings: a review. Surgical Technology International, 2019, 35: 50-57.
pmid: 31480092
[3] Rahimnejad M, Derakhshanfar S, Zhong W. Biomaterials and tissue engineering for scar management in wound care. Burns & Trauma, 2017, 5: 4.
[4] Lin F S, Lee J J, Lee A K X, et al. Calcium silicate-activated gelatin methacrylate hydrogel for accelerating human dermal fibroblast proliferation and differentiation. Polymers, 2020, 13(1): 70.
doi: 10.3390/polym13010070
[5] Yao Y X, Zhang A D, Yuan C S, et al. Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomaterials Science, 2021, 9(13): 4523-4540.
doi: 10.1039/d1bm00411e pmid: 34047308
[6] Cao H, Duan L X, Zhang Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 2021, 6: 426.
doi: 10.1038/s41392-021-00830-x pmid: 34916490
[7] Liang Y P, He J H, Guo B L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 2021, 15(8): 12687-12722.
doi: 10.1021/acsnano.1c04206 pmid: 34374515
[8] Maleki A, He J H, Bochani S, et al. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano, 2021, 15(12): 18895-18930.
doi: 10.1021/acsnano.1c08334 pmid: 34870413
[9] Tu C X, Lu H D, Zhou T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials, 2022, 286: 121597.
doi: 10.1016/j.biomaterials.2022.121597
[10] Zhao X, Wu H, Guo B L, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122: 34-47.
doi: S0142-9612(17)30019-4 pmid: 28107663
[11] Rohaizad N, Mayorga-Martinez C C, Fojů M, et al. Two-dimensional materials in biomedical, biosensing and sensing applications. Chemical Society Reviews, 2021, 50(1): 619-657.
doi: 10.1039/d0cs00150c pmid: 33206730
[12] Huang H, Dong C H, Feng W, et al. Biomedical engineering of two-dimensional MXenes. Advanced Drug Delivery Reviews, 2022, 184: 114178.
doi: 10.1016/j.addr.2022.114178
[13] Zhong Y J, Huang S, Feng Z R, et al. Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration. Journal of Biomedical Materials Research Part A, 2022, 110(11): 1840-1859.
doi: 10.1002/jbm.a.v110.11
[14] Zhang S, Liu H Y, Li W, et al. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. International Journal of Biological Macromolecules, 2023, 248: 125949.
doi: 10.1016/j.ijbiomac.2023.125949
[15] Yuan N N, Shao K, Huang S, et al. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: a review. International Journal of Biological Macromolecules, 2023, 240: 124321.
doi: 10.1016/j.ijbiomac.2023.124321
[16] Matica M A, Aachmann F L, Tøndervik A, et al. Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. International Journal of Molecular Sciences, 2019, 20(23): 5889.
doi: 10.3390/ijms20235889
[17] Ahmad Raus R, Wan Nawawi W M F, Nasaruddin R R. Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 2021, 16(3): 280-306.
doi: 10.1016/j.ajps.2020.10.001 pmid: 34276819
[18] Wang C G, Wang M, Xu T Z, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics, 2019, 9(1): 65-76.
doi: 10.7150/thno.29766 pmid: 30662554
[19] Qin L, Ling G X, Peng F F, et al. Black phosphorus nanosheets and gemcitabine encapsulated thermo-sensitive hydrogel for synergistic photothermal-chemotherapy. Journal of Colloid and Interface Science, 2019, 556: 232-238.
doi: S0021-9797(19)30960-9 pmid: 31446336
[20] Li M, Liu X M, Tan L, et al. Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomaterials Science, 2018, 6(8): 2110-2121.
doi: 10.1039/c8bm00499d pmid: 29882566
[21] Qian Z Y, Wang H P, Bai Y T, et al. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release. ACS Applied Materials & Interfaces, 2020, 12(50): 55659-55674.
[22] Cleetus C M, Alvarez Primo F, Fregoso G, et al. Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. International Journal of Nanomedicine, 2020, 15: 5097-5111.
doi: 10.2147/IJN.S255937 pmid: 32764939
[23] Xia L X, Wang S, Jiang Z W, et al. Hemostatic performance of chitosan-based hydrogel and its study on biodistribution and biodegradability in rats. Carbohydrate Polymers, 2021, 264: 117965.
doi: 10.1016/j.carbpol.2021.117965
[24] Shi W, Fang F, Kong Y F, et al. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Biofabrication, 2021, 14(1): 14107-14124.
doi: 10.1088/1758-5090/ac42de
[25] Yasin A, Ren Y, Li J A, et al. Advances in hyaluronic acid for biomedical applications. Frontiers in Bioengineering and Biotechnology, 2022, 10: 910290.
doi: 10.3389/fbioe.2022.910290
[26] Zhang M Y, Chen G, Lei M H, et al. A pH-sensitive oxidized-dextran based double drug-loaded hydrogel with high antibacterial properties. International Journal of Biological Macromolecules, 2021, 182: 385-393.
doi: 10.1016/j.ijbiomac.2021.03.169 pmid: 33798586
[27] Bao Z X, Gao M H, Fan X Y, et al. Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel. International Journal of Biological Macromolecules, 2020, 155: 163-173.
doi: S0141-8130(20)32796-3 pmid: 32229213
[28] Das S, Subuddhi U. Controlled delivery of ibuprofen from poly(vinyl alcohol)-poly(ethylene glycol) interpenetrating polymeric network hydrogels. Journal of Pharmaceutical Analysis, 2019, 9(2): 108-116.
doi: 10.1016/j.jpha.2018.11.007 pmid: 31011467
[29] Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 2008, 60(15): 1638-1649.
doi: 10.1016/j.addr.2008.08.002 pmid: 18840488
[30] Nagase K, Yamato M, Kanazawa H, et al. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials, 2018, 153: 27-48.
doi: S0142-9612(17)30668-3 pmid: 29096399
[31] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248-4253.
doi: 10.1002/adma.v23.37
[32] Li X L, Huang Z D, Shuck C E, et al. MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6(6): 389-404.
doi: 10.1038/s41570-022-00384-8 pmid: 37117426
[33] Yu X H, Cai X K, Cui H D, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 2017, 9(45): 17859-17864.
doi: 10.1039/c7nr05997c pmid: 29119157
[34] VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372(6547): eabf1581.
doi: 10.1126/science.abf1581
[35] Sikdar P, Uddin M M, Dip T M, et al. Recent advances in the synthesis of smart hydrogels. Materials Advances, 2021, 2(14): 4532-4573.
doi: 10.1039/D1MA00193K
[36] Rasool K, Helal M, Ali A, et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 2016, 10(3): 3674-3684.
doi: 10.1021/acsnano.6b00181
[37] Ahmad Arabi S, Sharifian Gh M, Babak A, et al. Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16586-16596.
[38] Lu B B, Zhu Z Y, Ma B Y, et al. 2D MXene nanomaterials for versatile biomedical applications: current trends and future prospects. Small, 2021, 17(46): e2100946.
[39] Lin X P, Li Z J, Qiu J M, et al. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomaterials Science, 2021, 9(16): 5437-5471.
doi: 10.1039/D1BM00526J
[40] Hao S Y, Han H C, Yang Z Y, et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Letters, 2022, 14(1): 178.
doi: 10.1007/s40820-022-00901-w pmid: 36001173
[41] Feng W, Han X G, Hu H, et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nature Communications, 2021, 12(1): 2203.
doi: 10.1038/s41467-021-22278-x pmid: 33850133
[42] Wang L F, Li Y, Zhao L, et al. Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale, 2020, 12(38): 19516-19535.
doi: 10.1039/D0NR05746K
[43] Han X X, Huang J, Lin H, et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 2018, 7(9): e1701394.
[44] Yang X W, Gao N, Zhou S, et al. MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Physical Chemistry Chemical Physics, 2018, 20(29): 19390-19397.
doi: 10.1039/c8cp02635a pmid: 30009291
[45] Yao Z Y, Sun H J, Sui H T, et al. 2D/2D heterojunction of R-scheme Ti3C2 MXene/MoS2 nanosheets for enhanced photocatalytic performance. Nanoscale Research Letters, 2020, 15(1): 78.
doi: 10.1186/s11671-020-03314-z
[46] Akuzum B, Maleski K, Anasori B, et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano, 2018, 12(3): 2685-2694.
doi: 10.1021/acsnano.7b08889 pmid: 29463080
[47] Lee M, Park J, Choe G, et al. A conductive and adhesive hydrogel composed of MXene nanoflakes as a paintable cardiac patch for infarcted heart repair. ACS Nano, 2023, 17(13): 12290-12304.
doi: 10.1021/acsnano.3c00933
[48] Li Y, Fu R Z, Duan Z G, et al. Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano, 2022, 16(5): 7486-7502.
doi: 10.1021/acsnano.1c10575 pmid: 35533294
[49] Xu X, Wang S G, Wu H, et al. A multimodal antimicrobial platform based on MXene for treatment of wound infection. Colloids and Surfaces B: Biointerfaces, 2021, 207: 111979.
doi: 10.1016/j.colsurfb.2021.111979
[50] Li Y, Han M M, Cai Y, et al. Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing. Biomaterials Science, 2022, 10(4): 1068-1082.
doi: 10.1039/D1BM01604K
[51] Zhou L, Zheng H, Liu Z X, et al. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing. ACS Nano, 2021, 15(2): 2468-2480.
doi: 10.1021/acsnano.0c06287 pmid: 33565857
[52] Rozmysłowska-Wojciechowska A, Karwowska E, Gloc M, et al. Controlling the porosity and biocidal properties of the chitosan-hyaluronate matrix hydrogel nanocomposites by the addition of 2D Ti3C2Tx MXene. Materials, 2020, 13(20): 4587.
doi: 10.3390/ma13204587
[53] Yang C, Luo Y, Lin H, et al. Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano, 2021, 15(1): 1086-1099.
doi: 10.1021/acsnano.0c08045 pmid: 33372766
[54] Zhao X, Wang L Y, Tang C Y, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano, 2020, 14(7): 8793-8805.
doi: 10.1021/acsnano.0c03391
[55] Wei C, Tang P F, Tang Y H, et al. Sponge-like macroporous hydrogel with antibacterial and ROS scavenging capabilities for diabetic wound regeneration. Advanced Healthcare Materials, 2022, 11(20): e2200717.
[56] Yi X L, Duan Q Y, Wu F G. Low-temperature photothermal therapy: strategies and applications. Research (Wash D C), 2021, 2021: 9816594.
[57] Zhang W J, Li S W, Yan Y Z, et al. Dual (pH- and ROS-) responsive antibacterial MXene-based nanocarrier for drug delivery. International Journal of Molecular Sciences, 2022, 23(23): 14925.
doi: 10.3390/ijms232314925
[58] Li Z L, Zhang H, Han J, et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Advanced Materials, 2018, 30(25): e1706981.
[59] Zheng Y W, Yan Y L, Lin L M, et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomaterialia, 2022, 142: 113-123.
doi: 10.1016/j.actbio.2022.02.019 pmid: 35189382
[60] Kim Y E, Kim J. ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Applied Materials & Interfaces, 2021, 14(20): 23002-23021.
[61] Zhao X, Wang L Y, Li J M, et al. Redox-mediated artificial non-enzymatic antioxidant MXene nanoplatforms for acute kidney injury alleviation. Advanced Science, 2021, 8(18): e2101498.
[62] Riahi R, Yang Y L, Zhang D D, et al. Advances in wound-healing assays for probing collective cell migration. Journal Laboratory Automation, 2012, 17(1): 59-65.
doi: 10.1177/2211068211426550
[63] Verdes M, Mace K, Margetts L, et al. Status and challenges of electrical stimulation use in chronic wound healing. Current Opinion in Biotechnology, 2022, 75: 102710.
doi: 10.1016/j.copbio.2022.102710
[64] Mao L, Hu S M, Gao Y H, et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Advanced Healthcare Materials, 2020, 9(19): e2000872.
[65] Martin P. Wound healing: aiming for perfect skin regeneration. Science, 1997, 276(5309): 75-81.
doi: 10.1126/science.276.5309.75 pmid: 9082989
[66] Jin L, Guo X Q, Gao D, et al. An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioactive Materials, 2022, 16: 162-172.
doi: 10.1016/j.bioactmat.2022.03.006 pmid: 35415283
[67] Zou X S, Pan T T, Chen L, et al. Luminescence materials for pH and oxygen sensing in microbial cells: structures, optical properties, and biological applications. Critical Reviews in Biotechnology, 2017, 37(6): 723-738.
doi: 10.1080/07388551.2016.1223011
[68] Nasrallah G K, Al-Asmakh M. Ecotoxicological assessment of Ti3C2Tx (MXene) using zebrafish embryo model. Environmental Science: Nano, 2018, 5(4) : 1002-1011.
doi: 10.1039/C7EN01239J
[1] 张贵雪, 董晓艺, 潘洁, 李启艳. 铋基纳米材料在抗菌领域的研究进展*[J]. 中国生物工程杂志, 2024, 44(2/3): 153-163.
[2] 聂铭甫, 李由然, 石贵阳. 基于磁性壳聚糖复合材料对耐高温酶的固定化研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 83-94.
[3] 熊利洋, 胡秀玲, 魏云林. 耐药菌非抗生素疗法研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 50-58.
[4] 闫春晓,吴昊,阮海华,袁琳,宋倩倩,乔建军. 鼠伤寒沙门菌入侵宿主细胞机制研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 69-78.
[5] 张琪, 张益霞, 薛彩丽, 张辉, 张云鹏, 杨大鹏. 海蛎壳生物质资源再利用的研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 126-139.
[6] 袁小晶,尹海梦,樊晓玮,何俊林,郝石磊,季金苟. 角蛋白/海藻酸钠/聚丙烯酰胺水凝胶皮肤敷料的制备及创口修复研究[J]. 中国生物工程杂志, 2021, 41(8): 17-24.
[7] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[8] 连将儒,马伟芳. DNA水凝胶应用于环境样品快速检测的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 107-115.
[9] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[10] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[11] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[12] 程平,张洋子,马翾,陈旭,朱保庆,许文涛. 刺激响应型DNA水凝胶的性质及其应用 *[J]. 中国生物工程杂志, 2020, 40(3): 132-143.
[13] 唐馨,毛新芳,马彬云,苟萍. 抗菌肽的研究现状和挑战 *[J]. 中国生物工程杂志, 2019, 39(8): 86-94.
[14] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[15] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.