Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (4): 1-13    DOI: 10.13523/j.cb.2308006
研究报告     
铁蛋白纳米颗粒体内成像及肿瘤靶向性研究*
张磊,孙晓敬,马茜,郭娇,李碧璇,张永峰,田甜,汪洋**()
西安医学院基础医学部 西安市病原微生物与肿瘤免疫重点实验室 西安 710021
In Vivo Imaging and Tumor Targeting of Ferritin Protein Nanoparticles
ZHANG Lei,SUN Xiaojing,MA Xi,GUO Jiao,LI Bixuan,ZHANG Yongfeng,TIAN Tian,WANG Yang**()
Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
 全文: PDF(2822 KB)   HTML
摘要:

目的:构建近红外荧光探针修饰的铁蛋白纳米颗粒,研究其作为体内成像系统的安全性以及在小鼠体内的生物分布情况和对肿瘤组织的靶向性。方法:通过在铁蛋白(ferritin)表面人工设计半胱氨酸点突变,通过半胱氨酸巯基和含有马来酰亚胺(maleimide)的Dy731近红外荧光探针分子进行巯基偶联,对铁蛋白纳米颗粒表面进行功能化修饰,使荧光探针以共价的形式结合在蛋白纳米颗粒的表面;将近红外荧光探针修饰过的铁蛋白纳米颗粒(Dy731-Ft)与5% w/v琼脂糖溶液混合冷却后制成凝胶,置于小鼠皮下和腹腔肌肉壁下,检测蛋白纳米颗粒穿透皮肤和肌肉组织的能力;将Dy731-Ft蛋白纳米颗粒通过尾静脉对小鼠进行活体注射,观察小鼠是否产生急性不良反应,检测近红外荧光强度以观察Dy731-Ft作为体内成像系统在小鼠体内的分布情况;构建U87-MG肿瘤异种移植动物模型,进行尾静脉注射验证Dy731-Ft在荷瘤小鼠组织器官内的分布和对于肿瘤组织的靶向性。结果:通过动物实验表明,小鼠体内注射铁蛋白纳米颗粒和显像期间及之后均未见急性不良反应,说明铁蛋白纳米颗粒具有良好的生物相容性,进入体内主要在肝脏积累。结论:近红外Dy731-Ft蛋白纳米颗粒能够靶向U87-MG肿瘤组织,推测其在肿瘤组织内的积累可能与转铁蛋白受体1(transferrin receptor 1,TfR-1)介导的细胞内吞作用和肿瘤组织增强渗透性以及滞留效应(enhanced permeability and retention effect,EPR)的协同作用相关。

关键词: 铁蛋白纳米颗粒肿瘤靶向成像转铁蛋白受体1    
Abstract:

Objective: To construct ferritin nanoparticles modified with near-infrared fluorescent probes, and to study their bio-safety as an in vivo imaging system, biological distribution in mice, and tumor targeting. Methods: By artificially designing cysteine point mutation on the surface of ferritin, the surface of ferritin nanoparticles was functionalized with Dy731 fluorescent probe by sulfhydryl coupling of cysteine sulfhydryl groups and the maleimide group of the Dy731 dye. Ferritin nanoparticles (Dy731-Ft) modified with near-infrared fluorescent probes were mixed with 5% w/v agarose solution and cooled to form a gel. The gel was placed under the skin and abdominal muscle wall of mice to determine the ability of Dy731-Ft to penetrate skin and muscle tissue. Dy731-Ft protein nanoparticles were injected into mice through the tail vein to observe whether acute adverse reactions occurred in mice and to detect the in vivo near-infrared fluorescence intensity and observe the bio-distribution of Dy731-Ft as an in vivo imaging system in mice. U87-MG tumor xenograft models were constructed and the distribution of Dy731-Ft within the tissues and organs of tumor-bearing mice and its targeting to tumor tissues were verified by tail vein injection. Results: The results showed that no acute adverse reactions were observed during and after the injection of ferritin nanoparticles into mice, indicating that ferritin nanoparticles have good biocompatibility. Dy731-Ft accumulates mainly in the liver after in vivo injection. Conclusion: Near-infrared Dy731-Ft protein nanoparticles can target U87-MG tumor tissues, and its accumulation in tumor tissues may be related to the synergistic effect of the transferrin receptor 1 (TfR-1) mediated cellular endocytosis and enhanced permeability and retention effect (EPR) in tumor tissues.

Key words: Ferritin nanoparticle    Tumor targeting imaging    Transferrin receptor 1
收稿日期: 2023-08-04 出版日期: 2024-04-30
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(32070069);陕西省教育厅重点实验室项目(20JS140);陕西省科技厅面上项目(2021JM-506);陕西省科技厅青年项目(2022JQ-216)
通讯作者: ** 电子信箱:yang.wang@xiyi.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张磊
孙晓敬
马茜
郭娇
李碧璇
张永峰
田甜
汪洋

引用本文:

张磊, 孙晓敬, 马茜, 郭娇, 李碧璇, 张永峰, 田甜, 汪洋. 铁蛋白纳米颗粒体内成像及肿瘤靶向性研究*[J]. 中国生物工程杂志, 2024, 44(4): 1-13.

ZHANG Lei, SUN Xiaojing, MA Xi, GUO Jiao, LI Bixuan, ZHANG Yongfeng, TIAN Tian, WANG Yang. In Vivo Imaging and Tumor Targeting of Ferritin Protein Nanoparticles. China Biotechnology, 2024, 44(4): 1-13.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2308006        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I4/1

图1  Ft蛋白质序列和蛋白纯化SDS凝胶电泳分析 M:Marker;S:超声破碎离心后的可溶部分;P:超声破碎离心后的不可溶部分;FT:固定化金属亲和层析后的流穿液;F1-F2:洗脱后收集的洗脱液;黄框内为重组表达的Ft蛋白纳米颗粒
图2  近红外荧光染料Dy731的化学结构
图3  Dy731-Ft蛋白纳米颗粒的MALDI质谱分析 A:Ft蛋白纳米颗粒 B:Dy731-Ft蛋白纳米颗粒
图4  Ft蛋白纳米颗粒透射电镜和非变性电泳分析 A:Ft蛋白纳米颗粒的透射电镜分析,黄色光圈为标记的Ft蛋白纳米颗粒的典型结构 B:Ft和Dy731-Ft蛋白纳米颗粒的非变性电泳分析
图5  对不同浓度的Dy731近红外荧光探针使用IVIS成像系统进行成像 A:不同浓度的Dy731染料的荧光强度分析 B:Dy-731染料在IVIS系统下的成像
图6  Dy731-Ft和Dy731荧光染料的成像 A:使用IVIS 100系统对Dy731-Ft和Dy731染料进行成像 B:Dy731-Ft和Dy731染料的荧光辐射效率。1:Dy731-Ft(10 μmol/L);2:Dy731染料(10 μmol/L);3:Dy731-Ft(1 μmol/L);4:Dy731染料(1 μmol/L)
图7  Dy731-Ft琼脂糖凝胶在小鼠皮下和腹腔壁下成像 A:皮下植入 B:腹腔壁下方植入 C:Dy731-Ft体内成像的辐射效率。1:Dy731-Ft(10 μmol/L); 2:Dy731-Ft(1 μmol/L)
图8  Dy731标记的蛋白纳米颗粒的体内成像 A:注射后10分钟体内成像 B:注射后24小时体内成像。1:Dy731染料; 2:Dy731-Ft; 3:生理盐水对照
图9  Dy731-Ft在U87mg荷瘤小鼠体内分布与体内成像 A:注射前 B:注射后30分钟 C:注射后5小时 D:注射后24小时。黄色方框表示肿瘤部位,绿色为背景荧光
图10  Dy731-Ft 24 h内的体内荧光强度
图11  Dy731-Ft在U87mg荷瘤小鼠体内组织靶向分析 A:U87mg荷瘤小鼠的组织器官成像。1:脑组织; 2:肿瘤组织; 3:肝脏; 4:脾; 5:心; 6:肾脏; 7:胰腺; 8:皮肤; 9:肌肉组织; 10:骨; 11:小肠。绿色为背景荧光 B:不同器官的辐射信号强度百分比
[1] Uchida M, Klem M, Allen M, et al. Biological containers: protein cages as multifunctional nanoplatforms. Advanced Materials, 2007, 19(8): 1025-1042.
doi: 10.1002/adma.v19:8
[2] Schoonen L, van Hest J C M. Functionalization of protein-based nanocages for drug delivery applications. Nanoscale, 2014, 6(13): 7124-7141.
doi: 10.1039/c4nr00915k pmid: 24860847
[3] Maham A, Tang Z W, Wu H, et al. Protein-based nanomedicine platforms for drug delivery. Small, 2009, 5(15): 1706-1721.
doi: 10.1002/smll.200801602 pmid: 19572330
[4] De Jong W H, Borm P J A. Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine, 2008, 3(2): 133-149.
[5] Heger Z, Skalickova S, Zitka O, et al. Apoferritin applications in nanomedicine. Nanomedicine, 2014, 9(14): 2233-2245.
doi: 10.2217/nnm.14.119
[6] Zhang L B, Laug L, Münchgesang W, et al. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Letters, 2010, 10(1): 219-223.
doi: 10.1021/nl903313r pmid: 20017497
[7] Yang Z, Wang X Y, Diao H J, et al. Encapsulation of platinum anticancer drugs by apoferritin. Chemical Communications, 2007(33): 3453-3455.
pmid: 17700879
[8] Ma-Ham A, Wu H, Wang J, et al. Apoferritin-based nanomedicine platform for drug delivery: equilibrium binding study of daunomycin with DNA. Journal of Materials Chemistry, 2011, 21(24): 8700-8708.
doi: 10.1039/c0jm04321d
[9] Li L, Fang C J, Ryan J C, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3505-3510.
[10] Zhang L B, Fischer W, Pippel E, et al. Receptor-mediated cellular uptake of nanoparticles: a switchable delivery system. Small, 2011, 7(11): 1538-1541.
doi: 10.1002/smll.201100238 pmid: 21538872
[11] Torti S V, Torti F M. Iron and cancer: more ore to be mined. Nature Reviews Cancer, 2013, 13: 342-355.
doi: 10.1038/nrc3495 pmid: 23594855
[12] Chen T T, Li L, Chung D H, et al. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. The Journal of Experimental Medicine, 2005, 202(7): 955-965.
doi: 10.1084/jem.20042433
[13] Todorich B, Zhang X S, Slagle-Webb B, et al. Tim-2 is the receptor for H-ferritin on oligodendrocytes. Journal of Neurochemistry, 2008, 107(6): 1495-1505.
doi: 10.1111/j.1471-4159.2008.05678.x pmid: 19014383
[14] Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 2010, 148(2): 135-146.
doi: 10.1016/j.jconrel.2010.08.027 pmid: 20797419
[15] Daniels T R, Bernabeu E, Rodríguez J A, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochimica et Biophysica Acta, 2012, 1820(3): 291-317.
doi: 10.1016/j.bbagen.2011.07.016 pmid: 21851850
[1] 毛文刚,郭子妍,贾文敬,黄建忠,舒正玉. 植物甾醇的酶法修饰与生物转化*[J]. 中国生物工程杂志, 2024, 44(4): 112-121.
[2] 黄晓雯,皇甫雨静,姬聪浩,代月优,李姝璇,冯书营. 新型基因编辑技术加速盐藻表达系统的成熟和应用*[J]. 中国生物工程杂志, 2024, 44(4): 102-111.
[3] 周楚然,王美玲,黄建忠,柯崇榕,杨欣伟. 维生素B6的生理活性与合成的研究进展*[J]. 中国生物工程杂志, 2024, 44(4): 88-101.
[4] 史恩宇, 王宁, 赵溪悦, 陈博, 曹鸣芯, 李长义. 细菌介导的肿瘤治疗研究进展*[J]. 中国生物工程杂志, 2024, 44(2/3): 112-123.
[5] 张贵雪, 董晓艺, 潘洁, 李启艳. 铋基纳米材料在抗菌领域的研究进展*[J]. 中国生物工程杂志, 2024, 44(2/3): 153-163.
[6] 王瑞彬, 董世瑞. 基于小RNA调控工具在蓝藻合成生物学中的应用*[J]. 中国生物工程杂志, 2024, 44(2/3): 176-189.
[7] 徐显皓, 刘龙, 陈坚. 合成生物学与未来食品*[J]. 中国生物工程杂志, 2024, 44(1): 61-71.
[8] 李秋阳, 孙文涛, 秦磊, 吕波, 李春. 天然产物生物合成与微生物制造的挑战*[J]. 中国生物工程杂志, 2024, 44(1): 72-87.
[9] 武国庆, 薛晓舟, 闵剑, 林海龙. 全球能源低碳转型下生物液体燃料产业现状与展望*[J]. 中国生物工程杂志, 2024, 44(1): 88-97.
[10] 姜宇佳, 荆泽华, 冯静, 徐讯. 时空组学技术新进展*[J]. 中国生物工程杂志, 2024, 44(1): 19-31.
[11] 蔡年桂, 陈欣, 张清源, 底浩楠, 詹小贞, 陈军岩, 陈昊, 颜晓梅. 窥探纳米世界:纳米流式检测技术的研发及单颗粒水平表征应用*[J]. 中国生物工程杂志, 2023, 43(12): 1-13.
[12] 谷晓丽, 杨秀鹏, 喻丽, 凌志明, 许勇钢. 慢病毒介导的TET2基因稳定敲低SKM-1细胞株的构建及验证*[J]. 中国生物工程杂志, 2023, 43(12): 160-168.
[13] 卢承蓉,张梦君,郑维爽,陆晓娟,于盛洋,黄艺. 生物基可降解材料PHA提取工艺研究进展*[J]. 中国生物工程杂志, 2023, 43(11): 105-115.
[14] 安文政, 刘青, 张超, 邢微微, 蔡贵玲, 付文亮, 徐东刚. 基于贻贝和沙堡蠕虫的仿生黏附肽构建及评价*[J]. 中国生物工程杂志, 2023, 43(9): 1-8.
[15] 左锟澜, 邹诗施, 吴宗震, 国原源, 徐雁龙, 刘欢. 病原体相关合成生物学的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(9): 120-130.