Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (4): 14-22    DOI: 10.13523/j.cb.2308002
研究报告     
解脂耶氏酵母中Anillin家族蛋白的鉴定与功能*
邬欢1,**(),吴浩明2
1 华中科技大学同济医学院附属武汉儿童医院 武汉 430016
2 武汉轻工大学生命科学与技术学院 武汉 430023
Characterization of Anillin-related Protein and Its Function in Yarrowia lipolytica
WU Huan1,**(),WU Haoming2
1 Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
2 School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
 全文: PDF(1999 KB)   HTML
摘要:

目的:鉴定解脂耶氏酵母中Anillin家族蛋白,探究其对Septin细胞骨架组织的调控功能。方法:将模式生物酿酒酵母Anillin家族蛋白Bud4序列在解脂耶氏酵母数据库中比对,找到潜在的Anillin家族蛋白;从解脂耶氏酵母基因组中扩增其序列,将其与绿色荧光蛋白(green fluorescent protein,GFP)融合表达,通过荧光显微镜观察其胞内定位;对酿酒酵母细胞中潜在的Anillin家族蛋白进行过量表达,观察其对细胞形态和Septin组织的影响,从而确定其调控Septin组织的功能。结果:通过解脂耶氏酵母数据库中序列比对,找到两个潜在的Anillin家族蛋白,分别将其命名为YlBud4A(数据库中蛋白编号YALI0D11880)和YlBud4B(数据库中蛋白编号YALI0B07623),其C端与该家族蛋白成员同源性高,含有保守的DUF1709和PH结构域;与酿酒酵母Bud4类似,YlBud4B可以定位在芽颈,在芽体较大细胞中呈明显的双环结构,而YlBud4A没有芽颈定位;在酿酒酵母细胞中过量表达YlBud4B导致细胞产生显著的芽体变长细胞形态,Septin的正常组织被破坏,在变长的芽体中呈圆形结构。结论:解脂耶氏酵母YlBud4B与Anillin家族蛋白在序列和功能上都具有同源性,其可以与Septin细胞骨架相互作用,在调控Septin组织过程中发挥功能。

关键词: 解脂耶氏酵母Anillin细胞骨架细胞形态Septin    
Abstract:

Objective: To identify the anillin-related protein in Yarrowia lipolytica and to study its function in septin organization. Methods: We identified the anillin-related protein in Y. lipolytica by aligning the protein sequence of Saccharomyces cerevisiae Bud4 in the Y. lipolytica genome database. The sequences of these anillin-related proteins were amplified and fused with green fluorescent protein GFP to observe their intracellular localization. In the model organism budding yeast, these anillin-related proteins of Y. lipolytica were overexpressed and their effects on cell morphology and septin organization were determined to investigate their function in this process. Results: Two potential anillin-related proteins, named YlBud4A (protein number YALI0D11880 in the database) and YlBud4B (protein number YALI0B07623), were identified by sequence comparison in the Y. lipolytica genome database, both of which were conserved in their C-terminal containing DUF1709 and PH domain. YlBud4A had no bud neck localization, whereas YlBud4B localized to the bud neck as a double ring in medium and large bud cells, a localization pattern identical to Bud4. Overexpression of YlBud4B in budding yeast caused elongated buds and septin disruption, which clustered into dots. Conclusion: YlBud4B may interact with the septins and it is likely to be the functional homolog of anillin-related protein whereas YlBud4A is not.

Key words: Yarrowia lipolytica    Anillin    Cytoskeleton    Cell morphology    Septin
收稿日期: 2023-08-02 出版日期: 2024-04-30
ZTFLH:  Q81  
基金资助: * 国家自然科学基金(31901797);湖北省卫生健康科研基金(WJ2019H379);武汉市卫生健康科研基金(WX19Q32)
通讯作者: ** 电子信箱:wuh@whu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邬欢
吴浩明

引用本文:

邬欢, 吴浩明. 解脂耶氏酵母中Anillin家族蛋白的鉴定与功能*[J]. 中国生物工程杂志, 2024, 44(4): 14-22.

WU Huan, WU Haoming. Characterization of Anillin-related Protein and Its Function in Yarrowia lipolytica. China Biotechnology, 2024, 44(4): 14-22.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2308002        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I4/14

菌株 基因型 来源
YEF473A(Saccharomyces cerevisiae) a his3-Δ200 leu21 lys2-801 trp163 ura3-52 参考文献[23]
YEF4603(Saccharomyces cerevisiae) a his3200 leu21 lys2-801 trp163 ura3-52 shs1Δ∷kanMX 参考文献[23]
JGY881(Saccharomyces cerevisiae) a his3 leu2 lys2 trp1 ura3 CDC3-GFP:LEU2 本研究
DH5α(Escherichia coli) F-endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoRnupG Φ80dlacZΔM15Δ (lacZYA-argF) U169, hsdR17 ( r K - m K +), λ- TaKaRa, Japan
表1  研究中所用菌株
名称 序列(5'→3')
YlBUD4A-4F CGCGGATCCATGACGGTCGAGTCTGGACGTCTTTTC
YlBUD4A-5F CGCGGATCCATGCTGCGTCAAGCTCCCGTGGCTG
YlBUD4A-6F CCGGAATTCTCCTTCTCTGAGGGAC
YlBUD4A-8F CGCGGATCCATGTCTGCCCCCTCGTCGCCGC
YlBUD4A-8R ACCCATCGATTCACTTCATAGTGTTCTTCTC
YlBUD4B-1F CCGGAATTCATGCACAGACACACTGCCAGCC
YlBUD4B-2F CCGGAATTCATGAGACACGATAGAGGCCGCCTGTTC
YlBUD4B-1R ACCCAAGCTTTCAGAGCCCACTTCCCTCACTG
表2  研究中所用主要引物
图1  解脂耶氏酵母Anillin家族蛋白的鉴定和结构分析 A:解脂耶氏酵母YlBud4A和YlBud4B、白色念珠菌Int1以及酿酒酵母Bud4蛋白的结构域示意图 B:4个蛋白C端区域的同源性比对
图2  YlBud4A和YlBud4B全长及片段的表达水平和蛋白大小 A:解脂耶氏酵母YlBud4A和YlBud4B的蛋白区段示意图 B:YlBud4A和YlBud4B蛋白区段的Western blot分析
图3  YlBud4A、YlBud4B全长及片段的胞内定位 将质粒pBG2-YlBUD4A、pBG2-YlBUD4B和pBG2-YlBUD4B-C2转入酿酒酵母菌株YEF473A,观察这些细胞中的荧光信号。标尺:5 μm
图4  过量表达YlBud4B导致细胞芽体变长 将质粒pEGKT426和pEGKT426-YlBUD4B转入野生型菌株YEF473A和shs1Δ菌株YEF4603,在40倍显微镜视野下观察细胞形态。 标尺:5 μm
图5  过量表达YlBud4B导致Septin组织絮乱 将质粒pEGKT426和pEGKT426-YlBUD4B转入菌株JGY881(Cdc3-GFP),观察septin组织情况。Cdc3-GFP指示septin定位。标尺:5 μm
[1] Barr F A, Gruneberg U. Cytokinesis: placing and making the final cut. Cell, 2007, 131(5): 847-860.
doi: 10.1016/j.cell.2007.11.011 pmid: 18045532
[2] Bi E. Cytokinesis in budding yeast: the relationship between actomyosin ring function and septum formation. Cell Structure and Function, 2001, 26(6): 529-537.
pmid: 11942606
[3] Hartwell L. Genetic control of the cell division cycle in yeast: IV. Genes controlling bud emergence and cytokinesis. Experimental Cell Research, 1971, 69(2): 265-276.
pmid: 4950437
[4] Bertin A, McMurray M A, Grob P, et al. Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(24): 8274-8279.
[5] Oh Y, Bi E F. Septin structure and function in yeast and beyond. Trends in Cell Biology, 2011, 21(3): 141-148.
doi: 10.1016/j.tcb.2010.11.006 pmid: 21177106
[6] Chant J, Pringle J R. Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. The Journal of Cell Biology, 1995, 129(3): 751-765.
doi: 10.1083/jcb.129.3.751
[7] Longtine M S, DeMarini D J, Valencik M L, et al. The septins: roles in cytokinesis and other processes. Current Opinion in Cell Biology, 1996, 8(1): 106-119.
pmid: 8791410
[8] Barral Y, Mermall V, Mooseker M S, et al. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Molecular Cell, 2000, 5(5): 841-851.
pmid: 10882120
[9] Takizawa P A, DeRisi J L, Wilhelm J E, et al. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science, 2000, 290(5490): 341-344.
pmid: 11030653
[10] Park H O, Bi E F. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiology and Molecular Biology Reviews, 2007, 71(1): 48-96.
doi: 10.1128/MMBR.00028-06
[11] McQuilken M, Jentzsch M S, Verma A, et al. Analysis of septin reorganization at cytokinesis using polarized fluorescence microscopy. Frontiers in Cell and Developmental Biology, 2017, 5: 42.
doi: 10.3389/fcell.2017.00042 pmid: 28516085
[12] Kang P J, Hood-DeGrenier J K, Park H O. Coupling of septins to the axial landmark by Bud4 in budding yeast. Journal of Cell Science, 2013, 126(Pt 5): 1218-1226.
doi: 10.1242/jcs.118521 pmid: 23345395
[13] Wu H, Guo J, Zhou Y T, et al. The anillin-related region of Bud 4 is the major functional determinant for Bud4’s function in septin organization during bud growth and axial bud site selection in budding yeast. Eukaryotic Cell, 2015, 14(3): 241-251.
doi: 10.1128/EC.00268-14
[14] Chen X, Wang K J, Svitkina T, et al. Critical roles of a RhoGEF-anillin module in septin architectural remodeling during cytokinesis. Current Biology, 2020, 30(8): 1477-1490, e3.
doi: S0960-9822(20)30196-2 pmid: 32197082
[15] Paoletti A, Chang F. Analysis of mid1p, a protein required for placement of the cell division site, reveals a link between the nucleus and the cell surface in fission yeast. Molecular Biology of the Cell, 2000, 11(8): 2757-2773.
doi: 10.1091/mbc.11.8.2757 pmid: 10930468
[16] Tasto J J, Morrell J L, Gould K L. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. The Journal of Cell Biology, 2003, 160(7): 1093-1103.
doi: 10.1083/jcb.200211126
[17] Gale C A, Bendel C M, McClellan M, et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science, 1998, 279(5355): 1355-1358.
pmid: 9478896
[18] Orellana-Muñoz S, Dueñas-Santero E, Arnáiz-Pita Y, et al. The anillin-related Int 1 protein and the Sep7 septin collaborate to maintain cellular ploidy in Candida albicans. Scientific Reports, 2018, 8(1): 2257.
doi: 10.1038/s41598-018-20249-9 pmid: 29396461
[19] Justa-Schuch D, Heilig Y, Richthammer C, et al. Septum formation is regulated by the RHO4-specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Molecular Microbiology, 2010, 76(1): 220-235.
doi: 10.1111/j.1365-2958.2010.07093.x pmid: 20199606
[20] Si H Y, Rittenour W R, Xu K M, et al. Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Molecular Microbiology, 2012, 85(2): 252-270.
doi: 10.1111/mmi.2012.85.issue-2
[21] 宋以梅, 贾秀伟, 李树标, 等. 工业微生物解脂耶氏酵母及其应用研究. 中国生物工程杂志, 2020, 40(9): 77-86.
Song Y M, Jia X W, Li S B, et al. Industrial microorganism of Yarrowia lipolytica and its industrial amplicaiton. China Biotechnology, 2020, 40(9): 77-86.
[22] Nicaud J M. Yarrowia lipolytica. Yeast, 2012, 29(10): 409-418.
doi: 10.1002/yea.v29.10
[23] Bi E, Pringle J R. ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1996, 16(10): 5264-5275.
doi: 10.1128/MCB.16.10.5264 pmid: 8816439
[24] 邬欢, 郭伟娜, 孟庆杰, 等. 白念珠菌anillin家族蛋白Int1调控septin细胞骨架组织的结构与功能研究. 中华微生物学和免疫学杂志, 2023, 43(6): 425-431.
Wu H, Guo W N, Meng Q J, et al. Structure and mechanism of Candida albicans Int 1 involved in septin organization regulation. Chinese Journal of Microbiology and Immunology, 2023, 43(6): 425-431.
[25] Sanders S L, Herskowitz I. The BUD4 protein of yeast, required for axial budding, is localized to the mother/BUD neck in a cell cycle-dependent manner. The Journal of Cell Biology, 1996, 134(2): 413-427.
doi: 10.1083/jcb.134.2.413
[1] 王露鑫,房立霞,陈雅如,李孟旭,牛小龙,宋浩,曹英秀. 解脂耶氏酵母基于木质纤维素原料生产化学品研究进展*[J]. 中国生物工程杂志, 2022, 42(12): 91-100.
[2] 朱航志,蒋珊,陈丹,刘鹏阳,万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*[J]. 中国生物工程杂志, 2021, 41(4): 37-46.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[5] 彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.
[6] 陈凯丽,张付涛,王东月,张倩,李运清. 解脂耶氏酵母中囊泡蛋白YlSec15的鉴定及功能研究 *[J]. 中国生物工程杂志, 2019, 39(3): 29-36.
[7] 王艺颖,程海荣. 解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *[J]. 中国生物工程杂志, 2018, 38(8): 41-49.
[8] 汪小锋, 申旭光, 赵鹤云, 孙永川, 纪昌涛, 闫云君. 带His-tag的解脂耶氏酵母脂肪酶Lip2在毕赤酵母中的表达及纯化[J]. 中国生物工程杂志, 2011, 31(04): 53-59.
[9] 刘健,孙国强,郭美锦,张岳芳,贺莉清,袁旭军,张嗣良. 一新用于生化反应器的在线细胞显微观察仪[J]. 中国生物工程杂志, 2008, 28(8): 100-104.
[10] 胡风庆. MAPK对高等植物细胞分裂和生长的调节[J]. 中国生物工程杂志, 2002, 22(5): 58-64.
[11] 罗明典. 抗微生物蛋白质若干方面研究进展[J]. 中国生物工程杂志, 1988, 8(5): 1-2.
[12] 顾健人. 癌基因的概念研究进展及前景[J]. 中国生物工程杂志, 1986, 6(1): 43-55.
[13] 罗明典. 病毒基因工程研究进展(摘要)[J]. 中国生物工程杂志, 1981, 1(2): 12-13.