Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (7): 1-11    DOI: 10.13523/j.cb.2301030
研究报告     
HEV与细胞结合的氨基酸位点分析
林亚洁,刘畅,郭少奇,余梓豪,李明豫,刘君妃,郑子峥*(),夏宁邵
厦门大学公共卫生学院 国家传染病诊断试剂与疫苗工程技术研究中心 厦门 361102
Analysis of Amino Acid Sites for HEV Binding to Cells
Ya-jie LIN,Chang LIU,Shao-qi GUO,Zi-hao YU,Ming-yu LI,Jun-fei LIU,Zi-zheng ZHENG*(),Ning-shao XIA
National Institute of Diagnostics and Vaccine Development in Infections Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
 全文: PDF(3488 KB)   HTML
摘要:

目的:构建模型用于评估戊型肝炎病毒(hepatitis E virus,HEV)突变衣壳蛋白与细胞的结合作用以及各氨基酸位点在细胞结合过程中的作用,探讨HEV的入侵机制,为研究HEV的受体奠定基础。方法:以D66的基因四型重组类病毒颗粒样抗原为研究对象,对其关键结构域位点的氨基酸进行定点突变,利用聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)和酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)方法确认突变蛋白的正常构象,并通过流式细胞仪分析突变蛋白对吸附的影响,探讨影响病毒吸附入胞的关键位点。结果:通过聚合酶链式反应定点诱变技术成功制备并鉴定了45个正确折叠、构象正常的突变蛋白;ELISA检测结果显示,重组类病毒颗粒样抗原D66的单点突变并不会影响蛋白构象;应用模型模拟突变蛋白与细胞的结合过程,T484A、S488A、T489A、P491A、R512A、Y561A、N562A和T585A突变蛋白显著影响了对C3A的吸附。结论:成功建立了一种评估HEV衣壳蛋白与细胞结合性的模型,T484A、S488A、T489A、P491A、R512A等位点的丙氨酸突变显著减弱了HEV衣壳蛋白与细胞的结合,这些位点可能是影响HEV与细胞结合的关键位点。

关键词: 戊型肝炎病毒单点突变蛋白D66四型重组类病毒颗粒样抗原    
Abstract:

Objective: In this study, we constructed a model for evaluating the binding of hepatitis E virus (HEV) mutated capsid proteins to cells in a way that allowed us to evaluate the role of various amino acid sites in the cell binding process. This method helps us understand the invasion mechanism of HEV and lays a foundation for studying the receptor of HEV. Methods: We used a genotype IV recombinant virus-like particle-like antigen called D66, which contains the key domain of a.a.459-606.We performed site-specific mutations of amino acids at key D66 domain sites, and then confirmed the normal conformation of all mutated proteins by SDS-PAGE and ELISA methods. After confirming the conformation of the mutated proteins, we analyzed the effect of these mutated proteins on adsorption by flow cytometry to find out the key sites that affect the absorption of virus into the cell. Results: We successfully prepared and ide.pngied 45 correctly folded and conformationally normal mutant proteins by polymerase chain reaction site-specific mutagenesis. ELISA results showed that the single point mutation of recombinant viral particle-like antigen D66 did not affect the conformation of the protein. In the application of the model to simulate the binding process of mutant proteins to cells, we found that the mutant proteins of T484A, S488A, T489A, P491A, R512A, Y561A, N562A and T585A significantly affected their adsorption of C3A. Conclusion: In this study, a model was established to evaluate the cell binding of HEV capsid protein, and it was found that alanine mutations at T484A, S488A, T489A, P491A and R512A significantly weakened the cell binding of HEV capsid proteins. These sites may be the key sites that affect HEV binding to cells.

Key words: HEV    Single point mutant protein    Genotype IV recombinant virus-like particle antigen D66 protein
收稿日期: 2023-01-18 出版日期: 2023-08-03
ZTFLH:  Q819  
通讯作者: *电子信箱:zhengzizheng@xmu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林亚洁
刘畅
郭少奇
余梓豪
李明豫
刘君妃
郑子峥
夏宁邵

引用本文:

林亚洁, 刘畅, 郭少奇, 余梓豪, 李明豫, 刘君妃, 郑子峥, 夏宁邵. HEV与细胞结合的氨基酸位点分析[J]. 中国生物工程杂志, 2023, 43(7): 1-11.

Ya-jie LIN, Chang LIU, Shao-qi GUO, Zi-hao YU, Ming-yu LI, Jun-fei LIU, Zi-zheng ZHENG, Ning-shao XIA. Analysis of Amino Acid Sites for HEV Binding to Cells. China Biotechnology, 2023, 43(7): 1-11.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2301030        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I7/1

图1  pORF2的连续截断蛋白用条形图表示
图2  D66单点突变蛋白的SDS-PAGE电泳
图3  单克隆抗体与45个丙氨酸突变体的反应性
图4  D66突变蛋白与C3A细胞的结合能力
图5  与C3A细胞结合的氨基酸残基
图6  肝素酶处理对C3A细胞结合的影响
图7  D66突变蛋白与C3A细胞的结合能力
[1] Panda S K, Thakral D, Rehman S. Hepatitis E virus. Reviews in Medical Virology, 2007, 17(3): 151-180.
doi: 10.1002/rmv.522 pmid: 17051624
[2] Purcell R H, Emerson S U. Hepatitis E: an emerging awareness of an old disease. Journal of Hepatology, 2008, 48(3): 494-503.
doi: 10.1016/j.jhep.2007.12.008 pmid: 18192058
[3] Kamar N, Izopet J, Pavio N, et al. Hepatitis E virus infection. Nature Reviews Disease Primers, 2017, 3: 17086.
doi: 10.1038/nrdp.2017.86 pmid: 29154369
[4] Jaiswal S P B, Jain A K, Naik G, et al. Viral hepatitis during pregnancy. International Journal of Gynecology & Obstetrics, 2001, 72(2): 103-108.
[5] 张文. 戊型肝炎分子流行病学及其病原与宿主细胞互作机制研究. 上海: 上海交通大学, 2009.
Zhang W. Study of the molecular epidemiology of hepatitis E and the inferaction mechanism between HEV and its host. Shanghai: Shanghai Jiao Tong University, 2009.
[6] Pavio N, Renou C, Liberto G D, et al. Hepatitis E: a curious zoonosis. Frontiers in Bioscience, 2008, 13: 7172-7183.
[7] 王葳, 陈恺韵, 吴立梦, 等. 2017-2020年上海市戊型肝炎病毒基因型特征研究. 疾病监测, 2022, 37(2): 214-219.
Wang W, Chen K Y, Wu L M, et al. Genetic characteristics of hepatitis E in Shanghai, 2017-2020. Disease Surveillance, 2022, 37(2): 214-219.
[8] Liu P, Li L J, Wang L, et al. Phylogenetic analysis of 626 hepatitis E virus (HEV) isolates from humans and animals in China (1986-2011) showing genotype diversity and zoonotic transmission. Infection, Genetics and Evolution, 2012, 12(2): 428-434.
doi: 10.1016/j.meegid.2012.01.017
[9] Balayart M S, Andjaparidze A G, Savinskaya S S, et al. Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervirology, 1983, 20(1): 23-31.
doi: 10.1159/000149370 pmid: 6409836
[10] Nagashima S, Takahashi M, Kobayashi T, et al. Characterization of the quasi-enveloped hepatitis E virus particles released by the cellular exosomal pathway. Journal of Virology, 2017, 91(22): e00822-17.
[11] Takahashi M, Tanaka T, Takahashi H, et al. Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. Journal of Clinical Microbiology, 2010, 48(4): 1112-1125.
doi: 10.1128/JCM.02002-09 pmid: 20107086
[12] Yin X, Ambardekar C, Lu Y R, et al. Distinct entry mechanisms for nonenveloped and quasi-enveloped hepatitis E viruses. Journal of Virology, 2016, 90(8): 4232-4242.
doi: 10.1128/JVI.02804-15 pmid: 26865708
[13] Chapuy-Regaud S, Dubois M, Plisson-Chastang C, et al. Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the immune response. Biochimie, 2017, 141: 70-79.
doi: S0300-9084(17)30115-3 pmid: 28483690
[14] Reyes G R, Purdy M A, Kim J, et al. Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science, 1990, 247(4948): 1335-1339.
pmid: 2107574
[15] Tam A W, Smith M M, Guerra M E, et al. Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology, 1991, 185(1): 120-131.
doi: 10.1016/0042-6822(91)90760-9 pmid: 1926770
[16] Reyes G R, Yarbough P O, Tam A W, et al. Hepatitis E virus (HEV): the novel agent responsible for enterically transmitted non-A, non-B hepatitis. Gastroenterologia Japonica, 1991, 26(3): 142-147.
doi: 10.1007/BF02779285
[17] Koonin E V, Gorbalenya A E, Purdy M A, et al. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(17): 8259-8263.
[18] Korkaya H, Jameel S, Gupta D, et al. The ORF3 protein of hepatitis E virus binds to src homology 3 domains and activates MAPK. Journal of Biological Chemistry, 2001, 276(45): 42389-42400.
doi: 10.1074/jbc.M101546200 pmid: 11518702
[19] Nagashima S, Takahashi M, Jirintai S, et al. Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions. Journal of General Virology, 2011, 92(12): 2838-2848.
doi: 10.1099/vir.0.035378-0
[20] Yamada K, Takahashi M, Hoshino Y, et al. ORF3 protein of hepatitis E virus is essential for virion release from infected cells. Journal of General Virology, 2009, 90(8): 1880-1891.
doi: 10.1099/vir.0.010561-0
[21] Emerson S U, Nguyen H T, Torian U, et al. Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP m. png. Journal of Virology, 2010, 84(18): 9059-9069.
[22] Takahashi M, Yamada K, Hoshino Y, et al. Monoclonal antibodies raised against the ORF 3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Archives of Virology, 2008, 153(9): 1703-1713.
doi: 10.1007/s00705-008-0179-6 pmid: 18679765
[23] Li T C, Yamakawa Y, Suzuki K, et al. Expression and self-assembly of empty virus-like particles of hepatitis E virus. Journal of Virology, 1997, 71(10): 7207-7213.
pmid: 9311793
[24] Mushahwar I K, Dawson G J, Reyes G R. Hepatitis E virus: molecular biology and diagnosis. European Journal of Gastroenterology & Hepatology, 1996, 8(4): 312-318.
[25] Reyes G R, Huang C C, Tam A W, et al. Molecular organization and replication of hepatitis E virus (HEV). Archives of Virology Supplementum, 1993, 7: 15-25.
[26] 林庆山, 蒋婕, 李婷婷, 等. 杆状病毒-昆虫细胞系统表达的戊型肝炎病毒衣壳蛋白p495的纯化、结构解析以及免疫原性分析. 病毒学报, 2016, 32(3): 342-348.
Lin Q S, Jiang J, Li T T, et al. Expression, purification, structure determination and immunogenicity assay of hepatitis E virus capsid protein p 495 derived from baculovirus-based insect cell. Chinese Journal of Virology, 2016, 32(3): 342-348.
[27] Wei M X, Zhang X, Yu H, et al. Bacteria expressed hepatitis E virus capsid proteins maintain virion-like epitopes. Vaccine, 2014, 32(24): 2859-2865.
doi: 10.1016/j.vaccine.2014.02.025 pmid: 24662711
[28] Zhang J, Gu Y, Ge S X, et al. Analysis of hepatitis E virus neutralization sites using monoclonal antibodies directed against a virus capsid protein. Vaccine, 2005, 23(22): 2881-2892.
pmid: 15780737
[29] Zhang J Z, Ng M H, Xia N S, et al. Conformational antigenic determinants generated by interactions between a bacterially expressed recombinant peptide of the hepatitis E virus structural protein. Journal of Medical Virology, 2001, 64(2): 125-132.
pmid: 11360244
[30] Li S W, Zhang J, Li Y M, et al. A bacterially expressed particulate hepatitis E vaccine: antigenicity, immunogenicity and protectivity on primates. Vaccine, 2005, 23(22): 2893-2901.
pmid: 15780738
[31] Li S W, Tang X H, Seetharaman J, et al. Dimerization of hepatitis E virus capsid protein E2s domain is essential for virus-host interaction. PLoS Pathogens, 2009, 5(8): e1000537.
doi: 10.1371/journal.ppat.1000537
[32] Zhang J, Li S W, Wu T, et al. Hepatitis E virus: neutralizing sites, diagnosis, and protective immunity. Reviews in Medical Virology, 2012, 22(5): 339-349.
doi: 10.1002/rmv.1719 pmid: 22645002
[33] 何志强, 张军, 李少伟, 等. 颗粒化重组戊型肝炎病毒衣壳蛋白及其抗原性与免疫原性. 生物工程学报, 2004, 20(2): 262-268.
He Z Q, Zhang J, Li S W, et al. Particulate recombinant hepatitis E virus capsid protein and its antigenicity and immunogenicity. Chinese Journal of Biotechnology, 2004, 20(2): 262-268.
[34] 何水珍, 郑子峥, 吴婷, 等. 戊型肝炎病毒细胞吸附模型的建立及病毒吸附区域初步研究. 病毒学报, 2006, 22(6): 426-430.
He S Z, Zheng Z Z, Wu T, et al. The establishment of cellular attachment model for hepatitis E virus (HEV) and its application in the ide.pngication of HEV cellular attachment region. Chinese Journal of Virology, 2006, 22(6): 426-430.
[35] Emerson S U, Nguyen H, Graff J, et al. In vitro replication of hepatitis E virus (HEV) genomes and of an HEV replicon expressing green fluorescent protein. Journal of Virology, 2004, 78(9): 4838-4846.
doi: 10.1128/JVI.78.9.4838-4846.2004
[36] Li S W, Zhang J, He Z Q, et al. Mutational analysis of essential interactions involved in the assembly of hepatitis E virus capsid. Journal of Biological Chemistry, 2005, 280(5): 3400-3406.
doi: 10.1074/jbc.M410361200
[37] Kalia M, Chandra V, Rahman S A, et al. Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF 2 capsid protein and for viral infection. Journal of Virology, 2009, 83(24): 12714-12724.
doi: 10.1128/JVI.00717-09
[1] 李丹丹,杨春亮. 猪戊型肝炎病毒重组蛋白ORF2-V1单克隆抗体的制备及抗原表位差异分析[J]. 中国生物工程杂志, 2008, 28(11): 14-19.
[2] 屈勇刚,贾鹏,金宁一,陆民,孙中锋,朱光泽,于芳,刘玉生,夏志平. 猪源戊型肝炎病毒基因IV型ORF3编码蛋白的表达及鉴定[J]. 中国生物工程杂志, 2008, 28(1): 8-12.
[3] 张可心,赵敏,郭巍,于敏,赵宇军,相文华. 猪戊型肝炎病毒基因ORF2片段AG02的融合表达及间接ELISA方法的初步建立[J]. 中国生物工程杂志, 2006, 26(08): 37-41.