Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (7): 23-35    DOI: 10.13523/j.cb.2301029
研究报告     
通过SRC3敲低改善糖尿病肾病肾功能紊乱的实验研究*
周鑫帝,甘淳,陈婉冰,李秋**()
重庆医科大学附属儿童医院 国家儿童健康与疾病临床医学研究中心 儿童发育疾病研究教育部重点实验室 儿科学重庆市重点实验室 重庆 400014
Experimental Study on Improvement of Renal Dysfunction in Diabetic Kidney Disease by SRC3 Knockdown
Xin-di ZHOU,Chun GAN,Wan-bing CHEN,Qiu LI**()
Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disease, Key Laboratory of Child Development and Disorders(Ministry of Education ), Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
 全文: PDF(3141 KB)   HTML
摘要:

目的:研究类固醇受体共激活因子3(steroid receptor coactivator 3,SRC3)参与糖尿病肾病(diabetic kidney disease,DKD)肾功能紊乱及足细胞损伤的分子机制。方法:分析临床DKD肾活检样本SRC3的表达与足细胞损伤的相关性,并通过对C57BL/6及SRC3-/-小鼠注射链脲霉素(streptozotocin,STZ)诱导DKD疾病模型,检测空腹血糖、血清肌酐、血清尿素氮、24 h尿量、尿白蛋白肌酐比以评估肾功能,苏木精-伊红染色法、糖原染色法观察肾小球病理改变,透射电镜观察肾小球超微结构变化;免疫荧光染色及Western blot分析SRC3、足细胞标志物WT1、Podocin、Nephrin、凋亡相关蛋白Caspase3在DKD肾脏中的表达;酶联免疫吸附测定检测足细胞和系膜细胞上清液炎症因子TNF-α、IL-1β的水平。结果:STZ成功诱导了DKD小鼠模型,可以模拟DKD患者肾小球损伤;SRC3在DKD患者及小鼠肾脏中高表达,伴随足细胞标志物表达降低,提示SRC3蛋白表达水平与肾小球损伤程度呈正相关;小鼠敲除SRC3基因能够改善STZ诱导的小鼠肾功能紊乱,缓解足细胞损伤;体外实验也证实了沉默SRC3可缓解高糖环境刺激下足细胞的损伤;同时,敲降SRC3能够减少高糖环境下足细胞与系膜细胞炎症因子的产生。结论:SRC3蛋白在DKD患者、小鼠肾脏以及高糖环境的足细胞中高表达,证实了SRC3与DKD肾小球损伤呈正相关,进一步研究证实,在高糖刺激下SRC3蛋白高表达可促进足细胞与系膜细胞炎症因子产生。

关键词: 类固醇受体共激活因子3糖尿病肾病肾功能紊乱炎症足细胞损伤    
Abstract:

Objective: To investigate the mechanism of steroid receptor coactivator 3 (SRC3) on renal dysfunction and podocyte injury in the diabetic kidney disease (DKD). Methods: Streptozotocin (STZ) was injected into C57BL/6 mice to induce DKD disease model. Fasting blood glucose (FBG), serum creatinine (Scr), blood urea nitrogen (BUN), 24-hour urine and urine albumin creatinine ratio (UACR) were detected to assess renal function. The glomerular pathology change and glomerular ultrastructure were observed by HE, PAS staining and transmission electron microscopy (TEM). Immunofluorescence was used to observe the relationship between SRC3 and glomerular injury in DKD patients and mice, and Western blot was used to detect the expression levels of SRC3, Podocin and WT1 in DKD glomeruli to verify the relationship between SRC3 and DKD mouse. SRC3-/- DKD mouse model was induced by STZ injection, and the effect of SRC3 on kidney injury was investigated by renal function, pathological structure, and ultrastructural changes compared with WT DKD mice. Western blot and immunofluorescence were used to detect the levels of SRC3 and podocyte markers WT1, Podocin and Nephrin in SRC3-/- DKD and WT DKD mice. Next, SRC3-silenced RNA and SRC3-overexpressed podocytes were constructed, and the negative control (NC), high glucose group (HG), high glucose+SRC3 silenced group (HG+si-SRC3), and overexpression of SRC3 group (SRC3OE) were set. Western blot was used to detect the levels of SRC3, WT1, Podocin and apoptosis-related protein Caspase3, and immunofluorescence was used to detect the levels of SRC3 in podocytes under HG environment. To verify the effect of SRC3 on DKD glomerular injury under high glucose environment, all the groups including Normal, HG, HG+si-SRC3 and SRC3OE were set to determine the relationship between SRC3 and the expression of inflammatory cytokines by detecting the levels of TNF-α and IL-1β of supernatant in both podocyte and mesangial cells. Results: Compared with WT group, FBG, BUN and Scr in WT+STZ group were significantly increased(P<0.001, P<0.001, P<0.001). The 24 h urine volume and UACR of WT DKD mice were the highest at 12 weeks(P<0.001, P<0.001). Glomerular injury shows glomerular sclerosis, mesangial hyperplasia and glomerular glycogen accumulation (P<0.01, P<0.01). The ultrastructure of the glomeruli showed that the podocyte process effaced obviously and the basement membrane thickness increased(P<0.001, P<0.001). The level of SRC3 in local glomeruli was significantly increased in DKD patients(P<0.001). Compared with WT mice, the levels of WT1 and Podocin in WT DKD mice were decreased (P<0.05, P<0.05), while the level of SRC3 was increased(P<0.05). Immunofluorescence also showed that SRC3 level was increased (P<0.001) while WT1 level was decreased (P<0.05). Compared with WT DKD mice, SRC3-/- DKD mice had no significant changes in FBG, but Scr and BUN were decreased (P<0.01, P<0.05). The 24 h urine volume of SRC3-/- DKD mice decreased significantly at 12 weeks (P<0.05). UACR was at a lower level in SRC3-/- DKD mice at 12 weeks (P<0.001). Furthermore, the glomerular injury was alleviated in SRC3-/- DKD mice. Western blot showed that SRC3-/- DKD mice had almost no expression of SRC3(P<0.001), while levels of WT1 and Podocin were significantly increased (P<0.05, P<0.01). Immunofluorescence also showed a negative correlation between SRC3 and Nephrin (P<0.001, P<0.05). In vitro, within high glucose (HG), the levels of SRC3 and Caspase3 were increased (P<0.05, P<0.01), while the levels of WT1 and Podocin were decreased (P<0.01, P<0.05). The levels of SRC3 and Caspase3 were significantly decreased in group HG+si-SRC3 (P<0.01, P<0.05), while WT1 and Podocin were increased (P<0.05, P<0.05). The level of SRC3 in SRC3OE was significantly increased (P<0.001), but there were no significant changes in podocyte markers and Caspase3 compared with NC group. Immunofluorescence also showed that SRC3 was significantly increased in podocytes in the high glucose environment(P<0.01). In podocytes and mesangial cells, the levels of TNF-α and IL-1β in HG group were significantly higher than those in Normal group (P<0.001, P<0.001). But all of them are decreased in HG+si-SRC3 (P<0.01, P<0.01). There was no significant difference between Normal and SRC3OE. Conclusion: High expression levels of SRC3 were found in glomeruli of DKD patients and mice, and podocytes in the high glucose environment, confirming that SRC3 is positively correlated with glomerular injury in DKD. In addition in vitro experiments show that SRC3 could promote the production of inflammatory cytokines in podocytes and mesangial cells only under a high glucose environment.

Key words: Steroid receptor coactivator 3(SRC3)    Diabetic kidney disease    Renal dysfunction    Inflammation    Podocyte injury
收稿日期: 2023-01-18 出版日期: 2023-08-03
ZTFLH:  Q819  
基金资助: 国家自然科学基金(82170720);重庆市自然科学基金(博士后基金)(cstc2021jcyj-bshX0109)
通讯作者: **电子信箱:liqiu809@hospital.cqmu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周鑫帝
甘淳
陈婉冰
李秋

引用本文:

周鑫帝, 甘淳, 陈婉冰, 李秋. 通过SRC3敲低改善糖尿病肾病肾功能紊乱的实验研究*[J]. 中国生物工程杂志, 2023, 43(7): 23-35.

Xin-di ZHOU, Chun GAN, Wan-bing CHEN, Qiu LI. Experimental Study on Improvement of Renal Dysfunction in Diabetic Kidney Disease by SRC3 Knockdown. China Biotechnology, 2023, 43(7): 23-35.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2301029        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I7/23

图1  WT组和WT+STZ组小鼠生化指标与病理结构
图2  DKD患者与小鼠肾脏中SRC3蛋白的表达情况
图3  WT DKD与SRC3-/- DKD小鼠生化指标与病理结构
图4  SRC3-/- DKD小鼠及高糖刺激下肾小球标志物表达情况
图5  高糖环境下足细胞与系膜细胞分泌炎症因子与SRC3的关系
[1] Magliano D, Boyko E. IDF Diabetes Atlas. 10th ed. Brussels, Belgium: International Diabetes Federation, 2021: 37.
[2] Umanath K, Lewis J B. Update on diabetic nephropathy: core curriculum 2018. American Journal of Kidney Diseases, 2018, 71(6): 884-895.
doi: S0272-6386(17)31102-2 pmid: 29398179
[3] 党佳蓉, 党琳慧, 郭煦妍, 等. 糖尿病肾病的发病机制研究. 医学信息, 2022, 35(17): 161-165.
Dang J R, Dang L H, Guo X Y, et al. Study on pathogenesis of diabetic nephropathy. Medical Information, 2022, 35(17): 161-165.
[4] 冯显. 中西医治疗糖尿病肾病的研究概况. 中国民族民间医药, 2022, 31(11): 46-49.
Feng X. Study on the treatment of diabetic nephropathy by traditional Chinese and western medicine. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2022, 31(11): 46-49.
[5] Li L C, Deng C X, Chen Q. SRC-3, a steroid receptor coactivator: implication in cancer. International Journal of Molecular Sciences, 2021, 22(9): 4760.
doi: 10.3390/ijms22094760
[6] Anzick S L, Kononen J, Walker R L, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science, 1997, 277(5328): 965-968.
doi: 10.1126/science.277.5328.965 pmid: 9252329
[7] Liao L, Kuang S Q, Yuan Y H, et al. Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1. The Journal of Steroid Biochemistry and Molecular Biology, 2002, 83(1-5): 3-14.
doi: 10.1016/S0960-0760(02)00254-6
[8] Liu M Y, Guo H P, Hong C Q, et al. Up-regulation of nuclear receptor coactivator amplified in breast cancer-1 in papillary thyroid carcinoma correlates with lymph node metastasis. Clinical and Translational Oncology, 2013, 15(11): 947-952.
doi: 10.1007/s12094-013-1029-x
[9] Tanner M M, Grenman S, Koul A, et al. Frequent amplification of chromosomal region 20q12-q 13 in ovarian cancer. Clinical Cancer Research, 2000, 6(5): 1833-1839.
pmid: 10815905
[10] Balmer N N, Richer J K, Spoelstra N S, et al. Steroid receptor coactivator AIB 1 in endometrial carcinoma, hyperplasia and normal endometrium: correlation with clinicopathologic parameters and biomarkers. Modern Pathology, 2006, 19(12): 1593-1605.
doi: 10.1038/modpathol.3800696
[11] Zhao Z F, Zhou S G, Li W Y, et al. AIB1 predicts tumor response to definitive chemoradiotherapy and prognosis in cervical squamous cell carcinoma. Journal of Cancer, 2019, 10(21): 5212-5222.
doi: 10.7150/jca.31697 pmid: 31602272
[12] Ma L Y, Liu W P, Xu A, et al. Activator of thyroid and retinoid receptor increases sorafenib resistance in hepatocellular carcinoma by facilitating the Warburg effect. Cancer Science, 2020, 111(6): 2028-2040.
doi: 10.1111/cas.14412 pmid: 32279388
[13] Dasgupta S, Rajapakshe K, Zhu B K, et al. Metabolic enzyme PFKFB 4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature, 2018, 556(7700): 249-254.
doi: 10.1038/s41586-018-0018-1
[14] Wang J J, Zou J X, Xue X Q, et al. ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nature Medicine, 2016, 22(5): 488-496.
doi: 10.1038/nm.4070 pmid: 27019329
[15] Coste A, Louet J F, Lagouge M, et al. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44): 17187-17192.
[16] York B, Yu C D, Sagen J V, et al. Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(24): 11122-11127.
[17] Wang W Y, Gu H B, Li W H, et al. SRC-3 knockout attenuates myocardial injury induced by chronic intermittent hypoxia in mice. Oxidative Medicine and Cellular Longevity, 2021, 2021: 6372430.
[18] 李佳, 李莹, 尹扬光, 等. 类固醇受体辅活化子-3在急性胰腺炎患者外周血中的表达及意义. 重庆医学, 2010, 39(15): 1995-1997.
Li J, Li Y, Yin Y G, et al. Expression and significance of steroid receptor coactivator-3 in the acute pancreatitis. Chongqing Medicine, 2010, 39(15): 1995-1997.
[19] 李军, 粟永萍, 王军平, 等. 类固醇受体辅活化子-3基因敲除对炎症反应中糖皮质激素受体的影响. 中国急救医学, 2008, 28(11): 994-998.
Li J, Su Y P, Wang J P, et al. Effect of steroid receptor coactivator-3 knock-out on GR during the inflammatory response. Chinese Journal of Critical Care Medicine, 2008, 28(11): 994-998.
[20] 李雯翀, 朱咏瑶, 刘枘岢, 等. 血清分泌型卷曲相关蛋白4、血管生成抑制蛋白-1对早期2型糖尿病肾病的诊断价值. 中国医刊, 2022, 57(10): 1124-1127.
Li W C, Zhu Y Y, Liu R K, et al. Diagnostic value of serum secretory curl related protein 4 and angiogenesis inhibitory protein-1 in early type 2 diabetic nephropathy. Chinese Journal of Medicine, 2022, 57(10): 1124-1127.
[21] Sanajou D, Ghorbani Haghjo A, Argani H, et al. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. European Journal of Pharmacology, 2018, 833: 158-164.
doi: S0014-2999(18)30319-4 pmid: 29883668
[22] Opazo-Ríos L, Mas S, Marín-Royo G, et al. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities. International Journal of Molecular Sciences, 2020, 21(7): 2632.
doi: 10.3390/ijms21072632
[23] Gómez-Jaramillo L, Cano-Cano F, Sánchez-Fernández E M, et al. Unravelling the inflammatory processes in the early stages of diabetic nephropathy and the potential effect of (ss)-DS-ONJ. International Journal of Molecular Sciences, 2022, 23(15): 8450.
doi: 10.3390/ijms23158450
[24] 刘嘉, 严宝飞, 张景正, 等. 黄芩汤对糖尿病肾病大鼠肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路的影响. 中国生物工程杂志, 2022, 42(11): 109-116.
Liu J, Yan B F, Zhang J Z, et al. Effect of huangqin decoction on NF-κB/NLRP3/caspase-1 signaling pathway and pyroptosis in kidney of diabetic nephropathy rats. China Biotechnology, 2022, 42(11): 109-116.
[25] 张皓, 倪敏, 张慧, 等. 糖尿病肾病患者外周血NOD样受体蛋白3炎症小体变化及其临床意义. 中华内分泌外科杂志, 2022, 16(4): 479-484.
Zhang H, Ni M, Zhang H, et al. Changes of NOD-like receptor family pyrin domain-containing protein 3 inflammasomes in peripheral blood of patients with diabetic nephropathy and its clinical significance. Chinese Journal of Endocrine Surgery, 2022, 16(4): 479-484.
[26] Yang X Q, Wang Y G, Gao G Q. High glucose induces rat mesangial cells proliferation and MCP-1 expression via ROS-mediated activation of NF-κB pathway, which is inhibited by eleutheroside E. Journal of Receptor and Signal Transduction Research, 2016, 36(2): 152-157.
doi: 10.3109/10799893.2015.1061002 pmid: 26644089
[27] 陈淑娟, 周丽明, 李明政, 等. LncRNA ANRIL/miR-122-5p轴在高糖诱导足细胞炎症及氧化应激中的作用及机制. 国际免疫学杂志, 2022, 45(5): 464-469.
Chen S J, Zhou L M, Li M Z, et al. Role and mechanism of LncRNA ANRIL/miR-122-5p axis in high glucose induced podocyte inflammation and oxidative stress. International Journal of Immunology, 2022, 45(5): 464-469.
[28] 李海燕, 杨彦平, 刘国. lncRNA PACER对高糖诱导的人肾小管上皮细胞中炎性因子表达和转分化的影响. 中国药师, 2021, 24(9): 1647-1651.
Li H Y, Yang Y P, Liu G. Effects of lncRNA PACER on the expressions of inflammatory factors and transdifferentiation in human renal tubular epithelial cells induced by high glucose. China Pharmacist, 2021, 24(9): 1647-1651.
[29] Stashi E, York B, O’Malley B W. Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends in Endocrinology and Metabolism: TEM, 2014, 25(7): 337-347.
doi: 10.1016/j.tem.2014.05.004
[30] Ma X R, Xu L Y, Wang S, et al. Deletion of steroid receptor coactivator-3 gene ameliorates hepatic steatosis. Journal of Hepatology, 2011, 55(2): 445-452.
doi: 10.1016/j.jhep.2010.11.022 pmid: 21184786
[31] Li J, Liu Y H, Ou S, et al. Steroid receptor coactivator-3 differentially regulates the inflammatory response in peritoneal macrophages. Molecular Medicine Reports, 2012, 5(4): 1099-1105.
doi: 10.3892/mmr.2012.750
[32] 杜智勇, 粟永萍, 徐建明, 等. 严重烧伤对SRC-3基因敲除小鼠肝脏NF-κB表达及核转位的影响. 第三军医大学学报, 2006, 28(8): 743-745.
Du Z Y, Su Y P, Xu J M, et al. Effect of burn injury on expression and nuclear translocation of NF-κB in SRC-3 knock out mice. Journal of Army Medical University, 2006, 28(8): 743-745.
[33] Reidy K, Kang H M, Hostetter T, et al. Molecular mechanisms of diabetic kidney disease. The Journal of Clinical Investigation, 2014, 124(6): 2333-2340.
doi: 10.1172/JCI72271
[34] Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat, characteristics of the experimental model. Experimental Biology and Medicine, 2012, 237(5): 481-490.
doi: 10.1258/ebm.2012.011372
[1] 胡文宇,李硕硕,程金波,袁增强. 不同类型神经细胞对低氧的敏感性研究*[J]. 中国生物工程杂志, 2022, 42(7): 1-11.
[2] 刘嘉, 严宝飞, 张景正, 马宇霆, 田朝晖, 曾庆琪. 黄芩汤对糖尿病肾病大鼠肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路的影响*[J]. 中国生物工程杂志, 2022, 42(11): 109-116.
[3] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[4] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[5] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[6] 尹卫国, 高媛, 梁瑜, 李映菊, 肖建华. 白细胞介素-1受体相关激酶-2的共价修饰与激酶活性的研究[J]. 中国生物工程杂志, 2011, 31(10): 12-17.
[7] 刘晓秋, 钱世钧. 医学研究中的转谷氨酰胺酶[J]. 中国生物工程杂志, 2003, 23(11): 33-36.
[8] JenniferVanBrunt, 还连栋. 白细胞间质素-1不止一种[J]. 中国生物工程杂志, 1986, 6(3): 64-65.