Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 51-58    DOI: 10.13523/j.cb.2211014
技术与方法     
利用核酸适配体封闭Tth DNA聚合酶突变体实现温启动一步法RT-qPCR*
张雅琪,张建,唐雨婷,黄庆媛,季璐,卢辰,罗志丹()
江苏海洋大学江苏省海洋生物资源与环境重点实验室 江苏省海洋生物产业技术协同创新中心 连云港 222005
Warm-start One-step RT-qPCR by Aptamer-blocking Tth DNA Polymerase Mutant
ZHANG Ya-qi,ZHANG Jian,TANG Yu-ting,HUANG Qing-yuan,JI Lu,LU Chen,LUO Zhi-dan()
Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
 全文: PDF(2072 KB)   HTML
摘要:

目的:Tth DNA聚合酶是一种同时具备DNA聚合酶和逆转录酶活性的耐热型工具酶。为消除其在一步法逆转录-实时荧光定量PCR(reverse transcription-quantitative real-time PCR,RT-qPCR)反应时的非特异性扩增,筛选可在较低温度下抑制其活性的核酸适配体,从而实现温启动一步法RT-qPCR。方法:在前期获得不依赖Mn2+的Tth DNA聚合酶突变体的基础上,检验四种DNA适配体及其对应的RNA适配体对Tth DNA聚合酶突变体的DNA聚合酶活性和逆转录酶活性的封闭效果以及解离温度,并通过分子对接模拟适配体与聚合酶的结合模式。结果:TQ21-11和TQ21-11-RNA两种适配体在40℃可有效抑制Tth DNA聚合酶的DNA聚合酶活性和逆转录酶活性,抑制率达到97%以上;两种适配体在50℃可几乎完全解离。这两种适配体均可用于温启动一步法RT-qPCR,其中TQ21-11-RNA的非特异性扩增更低。结论:利用TQ21-11和TQ21-11-RNA两种适配体在室温下封闭Tth DNA聚合酶突变体活性,可以实现温启动一步法RT-qPCR。

关键词: 核酸适配体TthDNA聚合酶突变体温启动一步法RT-qPCR    
Abstract:

Objective: Tth DNA polymerase (Tth pol) is a thermostable polymerase with both DNA polymerase and reverse transcriptase activities. To control the non-specific amplification in the one-step reverse transcription-quantitative real-time PCR (RT-qPCR), the aptamers that inhibit the activity of Tth pol mutant at moderate temperature were screened to perform warm-start one-step RT-qPCR. Methods: Based on the Mn2+-independent Tth pol mutant obtained in previous study, the effects of four DNA aptamers and their corresponding RNA aptamers on the inhibition of DNA polymerase and reverse transcriptase activity of this Tth pol mutant and the dissociation temperature were examined. The binding poses between these aptamers and Tth pol mutant were simulated by molecular docking. Results: Two aptamers TQ21-11 and TQ21-11-RNA can block two distinct activities of Tth pol at 40℃ with inhibition rates of over 97% and all of them can be almost completely dissociated at 50℃. Both aptamers were validated for warm-start one-step RT-qPCR, with lower non-specific amplification of TQ21-11-RNA. Conclusion: The aptamers TQ21-11 and TQ21-11-RNA were able to effectively block the activity of Tth pol mutant at moderate temperature and perform warm-start one-step RT-qPCR well.

Key words: Aptamer    Tth    DNA polymerase mutant    Warm-start    One-step RT-qPCR
收稿日期: 2022-11-08 出版日期: 2023-05-04
ZTFLH:  Q78  
通讯作者: **电子信箱:lzd@jou.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张雅琪
张建
唐雨婷
黄庆媛
季璐
卢辰
罗志丹

引用本文:

张雅琪, 张建, 唐雨婷, 黄庆媛, 季璐, 卢辰, 罗志丹. 利用核酸适配体封闭Tth DNA聚合酶突变体实现温启动一步法RT-qPCR*[J]. 中国生物工程杂志, 2023, 43(4): 51-58.

ZHANG Ya-qi, ZHANG Jian, TANG Yu-ting, HUANG Qing-yuan, JI Lu, LU Chen, LUO Zhi-dan. Warm-start One-step RT-qPCR by Aptamer-blocking Tth DNA Polymerase Mutant. China Biotechnology, 2023, 43(4): 51-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211014        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/51

名称 序列(5'-3') 长度/nt 参考文献
TQ21 TTCTCGGTTGGTCTCTGGCGGAGCGATCATCTCAGAGCATTCTTAGCGTTTTGTTCTTGTGTAT
GATTCGCTTTTCCC
78 [12]
TQ21-RNA UUCUCGGUUGGUCUCUGGCGGAGCGAUCAUCUCAGAGCAUUCUUAGCGUUUUGUUCUUGU
GUAUGAUUCGCUUUUCCC
78 -
Trnc-21 TGGCGGAGCGATCATCTCAGAGCATTCTTAGCGTTTTGTTCTTGTGTATGA 51 [15]
Trnc-21-RNA UGGCGGAGCGAUCAUCUCAGAGCAUUCUUAGCGUUUUGUUCUUGUGUAUGA 51 -
TQ21-11 GCGGTCGGCTCGGGGCATTCTTAGCGTTTTGCCCCGAGCCGACCGC 46 [16]
TQ21-11-RNA GCGGUCGGCUCGGGGCAUUCUUAGCGUUUUGCCCCGAGCCGACCGC 46 -
6-10 CAAGACGGGCGGGTGTGGTAGGCGCCCGTG 30 [17]
6-10-RNA CAAGACGGGCGGGUGUGGUAGGCGCCCGUG 30 -
表1  所用核酸适配体序列
图1  各适配体与Tth DNA聚合酶突变体在35℃反应1 h的扩增曲线
图2  各适配体在四种温度下反应1 h后对Tth DNA聚合酶突变体DNA聚合酶活性的抑制率
图3  一步法逆转录-实时荧光定量PCR扩增结果
图4  各适配体与Tth DNA聚合酶突变体分子对接结果最优姿态
适配体名称 HDock最佳对接分数
TQ21 -313.34
TQ21-RNA -367.85
Trnc-21 -289.71
Trnc-21-RNA -340.16
TQ21-11 -299.94
TQ21-11-RNA -362.13
6-10 -339.72
6-10-RNA -344.27
表2  各适配体最佳对接分数
[1] Carballeira N, Nazabal M, Brito J, et al. Purification of a thermostable DNA polymerase from Thermus thermophilus HB8, useful in the polymerase chain reaction. BioTechniques, 1990, 9(3): 276-281.
pmid: 2223065
[2] Myers T W, Gelfand D H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry, 1991, 30(31): 7661-7666.
pmid: 1714296
[3] Chandler D P, Wagnon C A, Bolton H Jr. Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR. Applied and Environmental Microbiology, 1998, 64(2): 669-677.
pmid: 9464406
[4] Suslov O, Steindler D A. PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Research, 2005, 33(20): e181.
doi: 10.1093/nar/gni176 pmid: 16314311
[5] Poddar S K, Sawyer M H, Connor J D. Effect of inhibitors in clinical specimens on Taq and Tth DNA polymerase-based PCR amplification of influenza A virus. Journal of Medical Microbiology, 1998, 47(12): 1131-1135.
pmid: 9856650
[6] Cai D Y, Behrmann O, Hufert F, et al. Direct DNA and RNA detection from large volumes of whole human blood. Scientific Reports, 2018, 8(1): 3410.
doi: 10.1038/s41598-018-21224-0 pmid: 29467420
[7] Cai D Y, Behrmann O, Hufert F, et al. Capacity of rTth polymerase to detect RNA in the presence of various inhibitors. PLoS One, 2018, 13(1): e0190041.
[8] El-Deiry W S, Downey K M, So A G. Molecular mechanisms of manganese mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(23): 7378-7382.
[9] Paul N, Shum J, Le T. Hot start PCR. Methods in Molecular Biology, 2010, 630: 301-318.
doi: 10.1007/978-1-60761-629-0_19 pmid: 20301005
[10] Sharkey D J, Scalice E R, Christy K G Jr, et al. Antibodies as thermolabile switches: high temperature triggering for the polymerase chain reaction. Bio/Technology, 1994, 12(5): 506-509.
doi: 10.1038/nbt0594-506
[11] Louwrier A, van der Valk A. Thermally reversible inactivation of Taq polymerase in an organic solvent for application in hot start PCR. Enzyme and Microbial Technology, 2005, 36(7): 947-952.
doi: 10.1016/j.enzmictec.2005.01.019
[12] Dang C, Jayasena S D. Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. Journal of Molecular Biology, 1996, 264(2): 268-278.
pmid: 8951376
[13] Tang Y T, Chen X Y, Zhang J, et al. Generation and characterization of monoclonal antibodies against tth DNA polymerase and its application to hot-start PCR. Protein and Peptide Letters, 2021, 28(10): 1090-1098.
doi: 10.2174/0929866528666210805122117 pmid: 34353249
[14] Zhang Y, Lai B S, Juhas M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5): 941.
doi: 10.3390/molecules24050941
[15] Lin Y, Jayasena S D. Inhibition of multiple thermostable DNA polymerases by a heterodimeric aptamer. Journal of Molecular Biology, 1997, 271(1): 100-111.
pmid: 9300057
[16] Yakimovich O Y, Alekseev Y I, Maksimenko A V, et al. Influence of DNA aptamer structure on the specificity of binding to Taq DNA polymerase. Biochemistry (Moscow), 2003, 68(2): 228-235.
doi: 10.1023/A:1022609714768
[17] Noma T, Ikebukuro K. Aptamer selection based on inhibitory activity using an evolution-mimicking algorithm. Biochemical and Biophysical Research Communications, 2006, 347(1): 226-231.
pmid: 16815302
[18] Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557): 871-876.
doi: 10.1126/science.abj8754 pmid: 34282049
[19] Eom S H, Wang J M, Steitz T A. Structure of Taq polymerase with DNA at the polymerase active site. Nature, 1996, 382(6588): 278-281.
doi: 10.1038/382278a0
[20] Zhang Y, Wang J, Xiao Y. 3dRNA: building RNA 3D structure with improved template library. Computational and Structural Biotechnology Journal, 2020, 18: 2416-2423.
doi: 10.1016/j.csbj.2020.08.017 pmid: 33005304
[21] Yan Y M, Tao H Y, He J H, et al. The HDOCK server for integrated protein-protein docking. Nature Protocols, 2020, 15(5): 1829-1852.
doi: 10.1038/s41596-020-0312-x pmid: 32269383
[1] 颜志超,宋梦华,刘建平,黄强. 基于分子模拟的河鲀毒素核酸适配体的连续优化*[J]. 中国生物工程杂志, 2022, 42(8): 1-12.
[2] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[3] 刘少金,冯雪娇,王俊姝,肖正强,程平生. 我国核酸药物市场分析及对策建议[J]. 中国生物工程杂志, 2021, 41(7): 99-109.
[4] 苏艺,蒋灵丽,林俊生. 小分子靶标与其核酸适配体亲和力的表征方法 *[J]. 中国生物工程杂志, 2019, 39(11): 96-104.
[5] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[6] 周妮, 陈丹, 姚冬生, 谢春芳, 刘大岭. 莱克多巴胺核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2014, 34(1): 42-49.
[7] 陈丹, 姚冬生, 谢春芳, 刘大岭. 四环素核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2013, 33(11): 56-62.