Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 1-9    DOI: 10.13523/j.cb.2211006
研究报告     
微核糖核酸簇miR-290-295促进体细胞重编程*
朱思颖1,2,杨洋2,李鹏东2,薛燕婷3,佘芹2,齐玲2,赵国军2,**(),廖宝剑2,3,**()
1.大理大学药学院 大理 671000
2.广州医科大学附属第六医院 清远 511518
3.中国科学院广州生物医药与健康研究院 广州 510530
MicroRNA Cluster 290-295 Enhances Somatic Cell Reprogramming
ZHU Si-ying1,2,YANG Yang2,LI Peng-dong2,XUE Yan-ting3,SHE Qin2,QI Ling2,ZHAO Guo-jun2,**(),LIAO Bao-jian2,3,**()
1. College of Pharmacy, Dali University, Dali 671000, China
2. The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
3. Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
 全文: PDF(1918 KB)   HTML
摘要:

目的:探究干细胞中表达丰度最高的微核糖核酸簇miR-290-295对体细胞重编程的影响。方法:使用逆转录病毒载体将miR-290-295簇在小鼠体细胞中过表达,研究其促进体细胞重编程为诱导性多能干细胞(induced pluripotent stem cells,iPSCs)以及此过程对细胞功能的影响。结果:miR-290-295簇的过表达在三因子(Sox2Klf4Oct4)诱导体系中能够显著提高小鼠体细胞重编程的效率;过表达miR-290-295簇能够促进重编程中多能性标记基因的上调与体细胞标记基因的下调,同时也会促进间质-上皮细胞转化(mesenchymal-epithelial transition,MET)标记基因的表达。结论:miR-290-295簇对小鼠体细胞重编程具有促进作用,这有助于深入理解干细胞多能性和重编程的RNA调节机制,为开发新型诱导体系提供了新视角。

关键词: 体细胞重编程诱导性多能干细胞微核糖核酸miR-290-295簇    
Abstract:

Objective: To explore the effect of miR-290-295, the most abundantly expressed microRNA cluster in stem cells, as a whole on somatic cell reprogramming. Methods: The miR-290-295 cluster was overexpressed into mouse somatic cells using retroviral vectors to explore whether it promotes the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and the effect on cell function through this process. Results: The overexpression of miR-290-295 cluster could significantly improve the efficiency of mouse somatic cell reprogramming in the traditional induction system of three factors (Sox2, Klf4 and Oct4). Overexpression of miR-290-295 cluster could not only promote the up-regulation of pluripotency marker genes and the down-regulation of somatic marker genes during reprogramming, but also the expression of mesenchymal-epithelial transition (MET) marker genes and cell proliferation related genes. Conclusion: miR-290-295 promotes the reprogramming of mouse somatic cells. Our findings are helpful to understand the RNA regulatory mechanism in stem cell pluripotency and reprogramming, and provide a new perspective for the development of new induction systems.

Key words: Somatic cell reprogramming    Induced pluripotent stem cells    MicroRNA    MiR-290-295 cluster
收稿日期: 2022-11-03 出版日期: 2023-05-04
ZTFLH:  Q813  
基金资助: 广东省自然科学基金(2021A15220179)
通讯作者: **电子信箱:zzhcsu@163.com;liao_baojian@gibh.ac.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱思颖
杨洋
李鹏东
薛燕婷
佘芹
齐玲
赵国军
廖宝剑

引用本文:

朱思颖, 杨洋, 李鹏东, 薛燕婷, 佘芹, 齐玲, 赵国军, 廖宝剑. 微核糖核酸簇miR-290-295促进体细胞重编程*[J]. 中国生物工程杂志, 2023, 43(4): 1-9.

ZHU Si-ying, YANG Yang, LI Peng-dong, XUE Yan-ting, SHE Qin, QI Ling, ZHAO Guo-jun, LIAO Bao-jian. MicroRNA Cluster 290-295 Enhances Somatic Cell Reprogramming. China Biotechnology, 2023, 43(4): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211006        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/1

图1  过表达miR-290-295簇的效率检测
miRNA Primer sequence (5'→3')
290-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAAAGTGCC
290-Q-forward ACACTCCAGCTGGGACTCAAACTATGGGGG
291A-5P-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGAGAGGG
291A-5P-Q-forward ACACTCCAGCTGGGCATCAAAGTGGAGGCC
291A-3P-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCACACAA
291A-3P-Q-forward ACACTCCAGCTGGGAAAGTGCTTCCACTTT
292A-5P-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAAAAGAG
292A-5P-Q-forward ACACTCCAGCTGGGACTCAAACTGGGGGCT
292A-3P-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACACTCAA
292A-3P-Q-forward ACACTCCAGCTGGGAAAGTGCCGCCAGGTTTT
293-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACACTACA
293-Q-forward ACACTCCAGCTGGGAGTGCCGCAGAGTTTG
294-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACACACAA
294-Q-forward ACACTCCAGCTGGGAAAGTGCTTCCCTTTT
295-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGACTCAA
295-Q-forward ACACTCCAGCTGGGAAAGTGCTACTACTTTT
U6-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAAAAATATGG
U6-RT-Q-forward ACACTCCAGCTGGGCAAGGATGACACGCAAAT
Mi-Q-reverse TGGTGTCGTGGAGTCGGCAATT
表1  RT-qPCR所用引物序列表
图2  过表达miR-290-295簇促进体细胞重编程
图3  miR-290-295簇通过经典的MET转化促进重编程
[1] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174
[2] Li L P, Chen K S, Wang T Y, et al. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nature Metabolism, 2020, 2(9): 882-892.
doi: 10.1038/s42255-020-0267-9 pmid: 32839595
[3] Liao B J, Bao X C, Liu L Q, et al. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. Journal of Biological Chemistry, 2011, 286(19): 17359-17364.
doi: 10.1074/jbc.C111.235960 pmid: 21454525
[4] Esteban M A, Wang T, Qin B M, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 2010, 6(1): 71-79.
doi: 10.1016/j.stem.2009.12.001 pmid: 20036631
[5] Hou P P, Li Y Q, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651-654.
doi: 10.1126/science.1239278 pmid: 23868920
[6] Wang J, Yu H P, Ma Q, et al. Phase separation of OCT 4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell, 2021, 28(10): 1868-1883, e11.
doi: 10.1016/j.stem.2021.04.023 pmid: 34038708
[7] Ying Z F, Xiang G, Zheng L J, et al. Short-term mitochondrial permeability transition pore opening modulates histone lysine methylation at the early phase of somatic cell reprogramming. Cell Metabolism, 2018, 28(6): 935-945, e5.
doi: S1550-4131(18)30502-3 pmid: 30174306
[8] Wu Y, Chen K S, Xing G S, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Science Advances, 2019, 5(11): eaax7525.
doi: 10.1126/sciadv.aax7525
[9] Yang Y, Liu B, Xu J, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell, 2017, 169(2): 243-257, e25.
doi: S0092-8674(17)30183-6 pmid: 28388409
[10] Xiang C G, Du Y Y, Meng G F, et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science, 2019, 364(6438): 399-402.
doi: 10.1126/science.aau7307
[11] Pei D Q, Beier D W, Levy-Lahad E, et al. Human embryo editing: opportunities and importance of transnational cooperation. Cell Stem Cell, 2017, 21(4): 423-426.
doi: S1934-5909(17)30377-6 pmid: 28985523
[12] Gao X F, Nowak-Imialek M, Chen X, et al. Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 2019, 21(6): 687-699.
doi: 10.1038/s41556-019-0333-2 pmid: 31160711
[13] Guan J Y, Wang G, Wang J L, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 2022, 605(7909): 325-331.
doi: 10.1038/s41586-022-04593-5
[14] Geekiyanage H, Rayatpisheh S, Wohlschlegel J A, et al. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39): 24213-24223.
[15] Barwari T, Joshi A, Mayr M. MicroRNAs in cardiovascular disease. Journal of the American College of Cardiology, 2016, 68(23): 2577-2584.
doi: S0735-1097(16)36537-8 pmid: 27931616
[16] Choi J, Kim Y K, Park K, et al. MicroRNA-139-5p regulates proliferation of hematopoietic progenitors and is repressed during BCR-ABL-mediated leukemogenesis. Blood, 2016, 128(17): 2117-2129.
pmid: 27605510
[17] Wang Y, Yang Z F, Le W D. Tiny but mighty: promising roles of microRNAs in the diagnosis and treatment of parkinson’s disease. Neuroscience Bulletin, 2017, 33(5): 543-551.
doi: 10.1007/s12264-017-0160-z
[18] Schweiger V, Hasimbegovic E, Kastner N, et al. Non-coding RNAs in stem cell regulation and cardiac regeneration: current problems and future perspectives. International Journal of Molecular Sciences, 2021, 22(17): 9160.
doi: 10.3390/ijms22179160
[19] Coradduzza D, Cruciani S, Arru C, et al. Role of miRNA-145, 148, and 185 and stem cells in prostate cancer. International Journal of Molecular Sciences, 2022, 23(3): 1626.
doi: 10.3390/ijms23031626
[20] Cao J Y, Wang B, Tang T T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p 53 in ischemic acute kidney injury. Theranostics, 2021, 11(11): 5248-5266.
doi: 10.7150/thno.54550
[21] Zhu J J, Yang S H, Qi Y D, et al. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Science Advances, 2022, 8(13): eabk0011.
doi: 10.1126/sciadv.abk0011
[22] Lee K S, Lee J, Kim H K, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. Journal of Extracellular Vesicles, 2021, 10(12): e12152.
[23] Li M A, He L. MicroRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2012, 34(8): 670-680.
doi: 10.1002/bies.v34.8
[24] Xue Y C, Ouyang K F, Huang J, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell, 2013, 152(1-2): 82-96.
doi: 10.1016/j.cell.2012.11.045 pmid: 23313552
[25] Schaefer M, Nabih A, Spies D, et al. Global and precise identification of functional miRNA targets in mESCs by integrative analysis. EMBO Reports, 2022, 23(9): e54762.
[26] Liu Z M, Wang J, Li G, et al. Structure of precursor microRNA’s terminal loop regulates human Dicer’s dicing activity by switching DExH/D domain. Protein & Cell, 2015, 6(3): 185-193.
[27] Shi M, Hao J, Wang X W, et al. Functional dissection of pri-miR-290- 295 in Dgcr8 knockout mouse embryonic stem cells. International Journal of Molecular Sciences, 2019, 20(18): 4345.
doi: 10.3390/ijms20184345
[28] Gu K L, Zhang Q, Yan Y, et al. Pluripotency-associated miR-290/ 302 family of microRNAs promote the dismantling of naive pluripotency. Cell Research, 2016, 26(3): 350-366.
doi: 10.1038/cr.2016.2
[29] Chen C F, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005, 33(20): e179.
doi: 10.1093/nar/gni178 pmid: 16314309
[30] Samavarchi-Tehrani P, Golipour A, David L, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 2010, 7(1): 64-77.
doi: 10.1016/j.stem.2010.04.015 pmid: 20621051
[31] Li Z H, Yang C S, Nakashima K, et al. Small RNA-mediated regulation of iPS cell generation. The EMBO Journal, 2011, 30(5): 823-834.
doi: 10.1038/emboj.2011.2
[32] Li S J, Lei Z X, Sun T L. The role of microRNAs in neurodegenerative diseases: a review. Cell Biology and Toxicology, 2023, 39:53-83.
doi: 10.1007/s10565-022-09761-x
[33] Tang F C, Barbacioru C, Bao S Q, et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis. Cell Stem Cell, 2010, 6(5): 468-478.
doi: 10.1016/j.stem.2010.03.015 pmid: 20452321
[34] Yang Q Y, Lin J M, Liu M, et al. Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Science Advances, 2016, 2(6): e1501482.
[35] Medeiros L A, Dennis L M, Gill M E, et al. MiR-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(34): 14163-14168.
[1] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[2] 牟奕,孙激. 直接重整细胞核程序的诱导性多能干细胞研究进展[J]. 中国生物工程杂志, 2009, 29(08): 124-128.