Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 71-78    DOI: 10.13523/j.cb.2210035
综述     
氧化石墨烯在骨组织工程中的应用*
纪玉洁,秦汉,向学熔()
重庆医科大学口腔医学院 口腔疾病与生物医学重庆市重点实验室 重庆市高校市级口腔生物医学工程重点实验室 重庆 401147
Application of Graphene Oxide in Bone Tissue Engineering
JI Yu-jie,QIN Han,XIANG Xue-rong()
Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
 全文: PDF(606 KB)   HTML
摘要:

传统骨组织工程支架材料存在强度不足、生物活性低等缺点。近年来,碳纳米材料在骨再生方面展现出独特的优势。氧化石墨烯(graphene oxide,GO)是一种具有代表性的二维碳纳米材料,作为石墨烯的氧化形式,GO具有优异的力学性能、良好的生物相容性、大比表面积、易于改性等特点。GO不仅能够直接促进干细胞黏附、增殖和分化,还可以改善传统支架的机械性能、生物活性、抗菌能力、免疫调节能力等,基于GO的复合材料有望成为理想的骨再生支架。综述GO的物理化学性能、生物相容性、生物降解和清除等特性,总结GO作为涂层、控释材料和复合支架在骨组织工程中的最新应用,并对其未来研究方向进行展望。

关键词: 氧化石墨烯纳米材料骨组织工程骨再生生物医学    
Abstract:

Traditional bone tissue engineering scaffold materials have disadvantages, such as insufficient strength and low bioactivity. In recent years, nanomaterials have shown many unique advantages in bone regeneration. Graphene oxide (GO), an oxidized form of graphene, is a representative two-dimensional nanomaterial. Many studies have shown that GO has excellent mechanical properties, good biocompatibility, large specific surface area and easy modification.GO can not only directly promote the adhesion, proliferation and differentiation of stem cells, but also improve the mechanical properties, biological activity, antibacterial ability and immunomodulatory ability of traditional scaffolds. GO-based composite materials are expected to become ideal scaffolds for bone regeneration. This paper first describes the physicochemical properties, biocompatibility, biodegradation and clearance of GO. Then,the latest applications of GO as coatings, controlled release agents and composite scaffolds in bone tissue engineering were summarized. At last, the advantages and challenges of GO are analyzed, and the future research direction is forecasted.

Key words: Graphene oxide    Nanomaterials    Bone tissue engineering    Bone regeneration    Biomedicine
收稿日期: 2022-10-24 出版日期: 2023-05-04
ZTFLH:  TB32Q819  
基金资助: 国家自然科学基金(82001063);重庆市自然科学基金博士后科学基金(cstc2020jcyj-bshX0108)
通讯作者: **电子信箱:cqzxfxp@sina.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
纪玉洁
秦汉
向学熔

引用本文:

纪玉洁, 秦汉, 向学熔. 氧化石墨烯在骨组织工程中的应用*[J]. 中国生物工程杂志, 2023, 43(4): 71-78.

JI Yu-jie, QIN Han, XIANG Xue-rong. Application of Graphene Oxide in Bone Tissue Engineering. China Biotechnology, 2023, 43(4): 71-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2210035        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/71

图1  氧化石墨烯的结构及在骨组织工程中的应用
[1] Pape H C, Evans A, Kobbe P. Autologous bone graft: properties and techniques. Journal of Orthopaedic Trauma, 2010, 24(Suppl 1): S36-S40.
doi: 10.1097/BOT.0b013e3181cec4a1
[2] Wubneh A, Tsekoura E K, Ayranci C, et al. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia, 2018, 80: 1-30.
doi: S1742-7061(18)30551-8 pmid: 30248515
[3] Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012, 30(10): 546-554.
doi: 10.1016/j.tibtech.2012.07.005 pmid: 22939815
[4] Balla V K, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomaterialia, 2010, 6(8): 3349-3359.
doi: 10.1016/j.actbio.2010.01.046
[5] Denry I, Kuhn L T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, 2016, 32(1): 43-53.
doi: 10.1016/j.dental.2015.09.008 pmid: 26423007
[6] Lee S H, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4-5): 339-359.
doi: 10.1016/j.addr.2007.03.016
[7] Peng Z L, Zhao T S, Zhou Y Q, et al. Bone tissue engineering via carbon-based nanomaterials. Advanced Healthcare Materials, 2020, 9(5): e1901495.
[8] Singh D P, Herrera C E, Singh B, et al. Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Materials Science & Engineering C, Materials for Biological Applications, 2018, 86: 173-197.
[9] Raslan A, Saenz del Burgo L, Ciriza J, et al. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. International Journal of Pharmaceutics, 2020, 580: 119226.
[10] Shin S R, Li Y C, Jang H L, et al. Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 2016, 105: 255-274.
doi: S0169-409X(16)30093-X pmid: 27037064
[11] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530-1534.
doi: 10.1126/science.1158877 pmid: 19541989
[12] Thompson B C, Murray E, Wallace G G. Graphite oxide to graphene, biomaterials to bionics. Advanced Materials (Deerfield Beach, Fla), 2015, 27(46): 7563-7582.
doi: 10.1002/adma.v27.46
[13] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.
doi: 10.1126/science.1157996 pmid: 18635798
[14] Azizi-Lalabadi M, Jafari S M. Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Advances in Colloid and Interface Science, 2021, 292: 102416.
[15] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials (Deerfield Beach, Fla), 2010, 22(35): 3906-3924.
doi: 10.1002/adma.201001068
[16] Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano, 2008, 2(3): 572-578.
doi: 10.1021/nn700349a pmid: 19206584
[17] Bhusari S A, Sharma V, Bose S, et al. HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility. Journal of the Royal Society, Interface, 2019, 16(150): 20180273.
[18] Du Z P, Wang C Y, Zhang R H, et al. Applications of graphene and its derivatives in bone repair: advantages for promoting bone formation and providing real-time detection, challenges and future prospects. International Journal of Nanomedicine, 2020, 15: 7523-7551.
doi: 10.2147/IJN.S271917 pmid: 33116486
[19] Natarajan J, Madras G, Chatterjee K. Development of graphene oxide-/galactitol polyester-based biodegradable composites for biomedical applications. ACS Omega, 2017, 2(9): 5545-5556.
doi: 10.1021/acsomega.7b01139 pmid: 30023749
[20] Wong S H M, Lim S S, Tiong T J, et al. Preliminary in vitro evaluation of chitosan-graphene oxide scaffolds on osteoblastic adhesion, proliferation, and early differentiation. International Journal of Molecular Sciences, 2020, 21(15): 5202.
doi: 10.3390/ijms21155202
[21] Luo Y, Shen H, Fang Y X, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Applied Materials & Interfaces, 2015, 7(11): 6331-6339.
[22] Şelaru A, Herman H, Vlãsceanu G M, et al. Graphene-oxide porous biopolymer hybrids enhance in vitro osteogenic differentiation and promote ectopic osteogenesis in vivo. International Journal of Molecular Sciences, 2022, 23(1): 491.
doi: 10.3390/ijms23010491
[23] Purohit S D, Bhaskar R, Singh H, et al. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 133: 592-602.
doi: S0141-8130(19)31607-1 pmid: 31004650
[24] Paz E, Forriol F, del Real J C, et al. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications. Materials Science & Engineering C, Materials for Biological Applications, 2017, 77: 1003-1011.
[25] Sivashankari P R, Moorthi A, Abudhahir K M, et al. Preparation and characterization of three-dimensional scaffolds based on hydroxypropyl chitosan-graft-graphene oxide. International Journal of Biological Macromolecules, 2018, 110: 522-530.
doi: S0141-8130(17)33003-9 pmid: 29154874
[26] Pang L, Dai C Q, Bi L, et al. Biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo. Nanoscale Research Letters, 2017, 12(1): 564.
doi: 10.1186/s11671-017-2317-0
[27] Wang K, Ruan J, Song H, et al. Biocompatibility of graphene oxide. Nanoscale Research Letters, 2011, 6(1): 8.
doi: 10.1007/s11671-010-9751-6 pmid: 27502632
[28] Wychowaniec J K, Litowczenko J, Tadyszak K. Fabricating versatile cell supports from nano- and micro-sized graphene oxide flakes. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103594.
[29] Pulingam T, Thong K L, Appaturi J N, et al. Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. Chemosphere, 2021, 281: 130739.
[30] Ou L L, Song B, Liang H M, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Particle and Fibre Toxicology, 2016, 13(1): 57.
doi: 10.1186/s12989-016-0168-y pmid: 27799056
[31] Chen W, Wang B, Liang S S, et al. Understanding the role of the lateral dimensional property of graphene oxide on its interactions with renal cells. Molecules (Basel, Switzerland), 2022, 27(22): 7956.
doi: 10.3390/molecules27227956
[32] Ma J, Liu R, Wang X, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano, 2015, 9(10): 10498-10515.
doi: 10.1021/acsnano.5b04751 pmid: 26389709
[33] Li J L, Wang X, Mei K C, et al. Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today, 2021, 37: 101061.
[34] 陈曦, 刘佳尚, 洪华. 氧化石墨烯氧化状态/横向尺寸对肝脏细胞死亡机制和炎症反应的影响. 华东理工大学学报(自然科学版), 2021, 47(6): 653-666.
Chen X, Liu J S, Hong H. Effect of oxidative state and lateral size of graphene oxide on cell death mechanisms and pro-inflammatory responses in the liver. Journal of East China University of Science and Technology, 2021, 47(6): 653-666.
[35] Zhou S, Bongiorno A. Origin of the chemical and kinetic stability of graphene oxide. Scientific Reports, 2013, 3: 2484.
doi: 10.1038/srep02484 pmid: 23963517
[36] Wu Y K, Feng W Y, Liu R, et al. Graphene oxide causes disordered zonation due to differential intralobular localization in the liver. ACS Nano, 2020, 14(1): 877-890.
doi: 10.1021/acsnano.9b08127 pmid: 31891481
[37] Lin J Y, Lai P X, Sun Y C, et al. Biodistribution of graphene oxide determined through postadministration labeling with DNA-conjugated gold nanoparticles and ICPMS. Analytical Chemistry, 2020, 92(20): 13997-14005.
doi: 10.1021/acs.analchem.0c02909
[38] Guarnieri D, Sánchez-Moreno P, Del Rio Castillo A E, et al. Biotransformation and biological interaction of graphene and graphene oxide during simulated oral ingestion. Small (Weinheim an Der Bergstrasse, Germany), 2018, 14(24): e1800227.
[39] Wen K P, Chen Y C, Chuang C H, et al. Accumulation and toxicity of intravenously-injected functionalized graphene oxide in mice. Journal of Applied Toxicology, 2015, 35(10): 1211-1218.
doi: 10.1002/jat.v35.10
[40] Su W C, Ku B K, Kulkarni P, et al. Deposition of graphene nanomaterial aerosols in human upper airways. Journal of Occupational and Environmental Hygiene, 2016, 13(1): 48-59.
doi: 10.1080/15459624.2015.1076162
[41] Jasim D A, Ménard-Moyon C, Bégin D, et al. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chemical Science, 2015, 6(7): 3952-3964.
doi: 10.1039/c5sc00114e pmid: 28717461
[42] Dimiev A M, Alemany L B, Tour J M. Graphene oxide, origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano, 2013, 7(1): 576-588.
doi: 10.1021/nn3047378 pmid: 23215236
[43] Sato T, Ose Y, Nagase H. Desmutagenic effect of humic acid. Mutation Research, 1986, 162(2): 173-178.
doi: 10.1016/0027-5107(86)90083-7
[44] Sydlik S A, Jhunjhunwala S, Webber M J, et al. In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano, 2015, 9(4): 3866-3874.
doi: 10.1021/acsnano.5b01290
[45] Kotchey G P, Allen B L, Vedala H, et al. The enzymatic oxidation of graphene oxide. ACS Nano, 2011, 5(3): 2098-2108.
doi: 10.1021/nn103265h pmid: 21344859
[46] Kurapati R, Russier J, Squillaci M A, et al. Dispersibility-dependent biodegradation of graphene oxide by myeloperoxidase. Small (Weinheim an Der Bergstrasse, Germany), 2015, 11(32): 3985-3994.
doi: 10.1002/smll.201500038
[47] Li Y J, Feng L Z, Shi X Z, et al. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small (Weinheim an Der Bergstrasse, Germany), 2014, 10(8): 1544-1554.
doi: 10.1002/smll.v10.8
[48] Wang F L, Saure L M, Schütt F, et al. Graphene oxide framework structures and coatings: impact on cell adhesion and pre-vascularization processes for bone grafts. International Journal of Molecular Sciences, 2022, 23(6): 3379.
doi: 10.3390/ijms23063379
[49] Zhang W J, Chang Q, Xu L, et al. Graphene oxide-copper nanocomposite-coated porous CaP scaffold for vascularized bone regeneration via activation of Hif-1α. Advanced Healthcare Materials, 2016, 5(11): 1299-1309.
doi: 10.1002/adhm.201500824 pmid: 26945787
[50] Su J H, Du Z B, Xiao L, et al. Graphene oxide coated titanium surfaces with osteoimmunomodulatory role to enhance osteogenesis. Materials Science & Engineering C, Materials for Biological Applications, 2020, 113: 110983.
[51] Li K W, Wang C H, Yan J H, et al. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Scientific Reports, 2018, 8(1): 1843.
doi: 10.1038/s41598-018-19742-y
[52] Qiu J J, Geng H, Wang D H, et al. Layer-number dependent antibacterial and osteogenic behaviors of graphene oxide electrophoretic deposited on titanium. ACS Applied Materials & Interfaces, 2017, 9(14): 12253-12263.
[53] Liu X F, Li L L, Gaihre B, et al. Scaffold-free spheroids with two-dimensional heteronano-layers (2DHNL) enabling stem cell and osteogenic factor codelivery for bone repair. ACS Nano, 2022, 16(2): 2741-2755.
doi: 10.1021/acsnano.1c09688
[54] Rostami F, Tamjid E, Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Materials Science and Engineering: C, Materials for Biological Applications, 2020, 115: 111102.
[55] Wang B, Yuan S, Xin W, et al. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair. International Journal of Biological Macromolecules, 2021, 192: 407-416.
doi: 10.1016/j.ijbiomac.2021.09.036 pmid: 34597700
[56] Zou M, Sun J C, Xiang Z. Induction of M2-type macrophage differentiation for bone defect repair via an interpenetration network hydrogel with a GO-based controlled release system. Advanced Healthcare Materials, 2021, 10(6): e2001502.
[57] Qin H, Ji Y J, Li G Y, et al. MicroRNA-29b/graphene oxide-polyethyleneglycol-polyethylenimine complex incorporated within chitosan hydrogel promotes osteogenesis. Frontiers in Chemistry, 2022, 10: 958561.
[58] Ou L L, Lan Y, Feng Z Q, et al. Functionalization of SF/HAP scaffold with GO-PEI-miRNA inhibitor complexes to enhance bone regeneration through activating transcription factor 4. Theranostics, 2019, 9(15): 4525-4541.
doi: 10.7150/thno.34676 pmid: 31285777
[59] Wu J N, Zheng A, Liu Y, et al. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. International Journal of Nanomedicine, 2019, 14: 733-751.
doi: 10.2147/IJN.S187664 pmid: 30705589
[60] Zhang Y L, Zhai D, Xu M C, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication, 2017, 9(2): 025037.
[61] Xie C M, Lu X, Han L, et al. Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Applied Materials & Interfaces, 2016, 8(3): 1707-1717.
[62] Han L, Sun H L, Tang P F, et al. Mussel-inspired graphene oxide nanosheet-enwrapped Ti scaffolds with drug-encapsulated gelatin microspheres for bone regeneration. Biomaterials Science, 2018, 6(3): 538-549.
doi: 10.1039/c7bm01060e pmid: 29376156
[63] Hamghavandi M R, Montazeri A, Ahmadi Daryakenari A, et al. Preparation and characterization of chitosan/graphene oxide nanocomposite coatings on Mg-2 wt% Zn scaffold by pulse electrodeposition process. Biomedical Materials (Bristol, England), 2021, 16(6): 065005.
[64] Tang J, Cao W J, Zhang Y, et al. Properties of vaterite-containing tricalcium silicate composited graphene oxide for biomaterials. Biomedical Materials (Bristol, England), 2019, 14(4): 045004.
[65] Liu X F, Miller A L 2nd, Park S, et al. Two-dimensional black phosphorus and graphene oxide nanosheets synergistically enhance cell proliferation and osteogenesis on 3D printed scaffolds. ACS Applied Materials & Interfaces, 2019, 11(26): 23558-23572.
[66] Yang Y, Li M, Luo H, et al. Surface-decorated graphene oxide sheets with copper nanoderivatives for bone regeneration: an in vitro and in vivo study regarding molecular mechanisms, osteogenesis, and anti-infection potential. ACS Infectious Diseases, 2022, 8(3): 499-515.
doi: 10.1021/acsinfecdis.1c00496
[67] Li Y Z, Yang L, Hou Y, et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioactive Materials, 2022, 18: 213-227.
doi: 10.1016/j.bioactmat.2022.03.021 pmid: 35387166
[68] Shuai C J, Peng B, Feng P, et al. In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. Journal of Advanced Research, 2022, 35: 13-24.
doi: 10.1016/j.jare.2021.03.009
[69] Wu T T, Li B L, Huang W H, et al. Developing a novel calcium magnesium silicate/graphene oxide incorporated silk fibroin porous scaffold with enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis. Biomedical Materials (Bristol, England), 2022, 17(3): 035012.
[1] 赖爽,刘畅,刘春晖,刘聪,任小华,牟雁东. 牙源性干细胞复合微渠多孔羟基磷灰石支架成骨性能研究*[J]. 中国生物工程杂志, 2022, 42(8): 13-20.
[2] 王琳,陈雅如,程湄婕,宋浩,曹英秀. 微生物几丁质酶研究进展及应用*[J]. 中国生物工程杂志, 2022, 42(12): 101-110.
[3] 吴东,肖枫,袁敏,陈禹保,张宏翔. 2011~2020年我国生物医学领域科技成果转化分析[J]. 中国生物工程杂志, 2022, 42(1/2): 191-201.
[4] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[5] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[6] 詹蕙璐,白莹,庄严,孟娟,赵海洋. 纳米材料诱导自噬引发保护作用的研究进展[J]. 中国生物工程杂志, 2019, 39(12): 64-72.
[7] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[8] 肖欢,宁宗. 氧化石墨烯荧光性能在生物医学领域的应用*[J]. 中国生物工程杂志, 2017, 37(12): 84-89.
[9] 王萍, 毛红菊. 纳米材料在生物医学检测中的应用[J]. 中国生物工程杂志, 2011, 31(9): 88-95.
[10] 黄凯宗 王文研 张光亚. 类弹性蛋白多肽及其在生物医学材料的应用[J]. 中国生物工程杂志, 2010, 30(05): 128-132.
[11] 杨文娟,沈涔超,张治洲. 检测纳米材料毒性的若干实验方法[J]. 中国生物工程杂志, 2009, 29(02): 119-124.
[12] 何创龙, 王远亮, 杨立华, 张军, 夏烈文. 骨组织工程天然衍生细胞外基质材料[J]. 中国生物工程杂志, 2003, 23(8): 11-17.
[13] 夏仕文, 张莉, 肖正华, 李文, 王云霞. 交联蛋白晶体技术及其应用[J]. 中国生物工程杂志, 2001, 21(6): 61-65.
[14] 陈燕青, 石俊艾. 中文生物医学文献信息数据库分析[J]. 中国生物工程杂志, 2000, 20(5): 75-76.
[15] 陈燕青, 程青蓉. Internet网上生物医学信息资源简介[J]. 中国生物工程杂志, 2000, 20(2): 78-79.