Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 59-70    DOI: 10.13523/j.cb.2209064
综述     
Wnt/β-catenin信号通路与肝癌
杨涛铧1,陈观源1,陈序1,李强1,张清1,吴跃锐2,蒋建伟3,李震东1,*()
1.暨南大学附属第一医院 广州 510630
2.暨南大学附属顺德医院 佛山 528306
3.暨南大学基础医学与公共卫生学院 广州 510632
Wnt/β-catenin Signal Pathway and Hepatocellular Carcinoma
YANG Tao-hua1,CHEN Guan-yuan1,CHEN Xu1,LI Qiang1,ZHANG Qing1,WU Yue-rui2,JIANG Jian-wei3,LI Zhen-dong1,*()
1. The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
2. Shunde Hospital Affiliated to Jinan University, Foshan 528306, China
3. School of Medicine, Jinan University, Guangzhou 510632, China
 全文: PDF(1244 KB)   HTML
摘要:

肝细胞癌是常见的恶性肿瘤,其发病机制尚未完全明确。Wnt信号通路与人体内多种病理生理过程相关,其中肝癌的发生、发展可能与经典的Wnt/β-catenin信号通路密切相关。Wnt/β-catein信号通路通过表达癌症相关基因、激活肝星状细胞、调控肝干细胞行为、促进肝癌细胞侵袭转移等方式调控肝癌的发生、发展。Wnt/β-catein信号通路在肝癌发生、发展中的作用有望为肝癌研究提供新的思路。

关键词: 肝细胞癌信号通路Wntβ-catenin    
Abstract:

As a common human malignant tumor, the pathogenesis of hepatocellular carcinoma (HCC) has not been completely clarified. Wnt signaling pathway is related to a variety of pathophysiological processes in human body, among which the carcinogenesis and the development of HCC may be closely related to the classic Wnt/β-catenin signaling pathway. Wnt/β-catenin regulates HCC by expressing cancer-related genes, activating hepatic stellate cells, regulating liver stem cell behavior, and promoting the invasion and metastasis of cancer cells. The role of Wnt/β-catein signaling pathway in HCC is discussed.

Key words: Hepatocellular carcinoma (HCC)    Signal pathway    Wnt    β-Catenin
收稿日期: 2022-09-23 出版日期: 2023-05-04
ZTFLH:  R73Q257  
通讯作者: *电子信箱:victor7922@163.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨涛铧
陈观源
陈序
李强
张清
吴跃锐
蒋建伟
李震东

引用本文:

杨涛铧, 陈观源, 陈序, 李强, 张清, 吴跃锐, 蒋建伟, 李震东. Wnt/β-catenin信号通路与肝癌[J]. 中国生物工程杂志, 2023, 43(4): 59-70.

YANG Tao-hua, CHEN Guan-yuan, CHEN Xu, LI Qiang, ZHANG Qing, WU Yue-rui, JIANG Jian-wei, LI Zhen-dong. Wnt/β-catenin Signal Pathway and Hepatocellular Carcinoma. China Biotechnology, 2023, 43(4): 59-70.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209064        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/59

图1  Wnt/β-catenin通路的开放与关闭
图2  Wnt/β-catenin与hippo通路的关系
图3  Wnt/β-catenin与notch通路的关系
图4  Wnt/β-catenin与hedgehog通路的关系
图5  Wnt/β-catenin与其他通路的关系
[1] 曹毛毛, 李贺, 孙殿钦, 等. 全球肝癌2020年流行病学现状. 中华肿瘤防治杂志, 2022, 29(5): 322-328.
Cao M M, Li H, Sun D Q, et al. Global epidemiology of liver cancer in 2020. Chinese Journal of Cancer Prevention and Treatment, 2022, 29(5): 322-328.
[2] 国家卫生健康委员会办公厅. 原发性肝癌诊疗指南(2022年版). 中华外科杂志, 2022, 60(4): 81-105.
General Office of the National Health Commission. Guidelines for diagnosis and treatment of primary liver cancer (2022 edition). Chinese Journal of Surgery, 2022, 60(4): 81-105.
[3] Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. Journal of Hematology & Oncology, 2020, 13(1): 165.
[4] Ling L, Nurcombe V, Cool S M. Wnt signaling controls the fate of mesenchymal stem cells. Gene, 2009, 433(1-2): 1-7.
doi: 10.1016/j.gene.2008.12.008 pmid: 19135507
[5] Mazzotta S, Neves C, Bonner R, et al. Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Reports, 2016, 7(4): 764-776.
doi: S2213-6711(16)30175-8 pmid: 27641648
[6] Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6): 985-999.
doi: S0092-8674(17)30547-0 pmid: 28575679
[7] 倪彩菊, 覃小珊, 黄赞松. Wnt/β-catenin信号通路与肝癌发生发展的研究进展. 世界华人消化杂志, 2021, 29(4): 190-196.
doi: 10.11569/wcjd.v29.i4.190
Ni C J, Qin X S, Huang Z S. Role of Wnt/β-catenin signaling pathway in occurrence and development of hepatocellular carcinoma. World Chinese Journal of Digestology, 2021, 29(4): 190-196.
doi: 10.11569/wcjd.v29.i4.190
[8] MacDonald B T, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 2009, 17(1): 9-26.
doi: 10.1016/j.devcel.2009.06.016 pmid: 19619488
[9] Cadigan K M. Wnt/β-catenin signaling: turning the switch. Developmental Cell, 2008, 14(3): 322-323.
doi: 10.1016/j.devcel.2008.02.006 pmid: 18331712
[10] Bisso A, Filipuzzi M, Gamarra Figueroa G P, et al. Cooperation between MYC and β-catenin in liver tumorigenesis requires Yap/taz. Hepatology, 2020, 72(4): 1430-1443.
doi: 10.1002/hep.31120
[11] Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene, 2017, 36(11): 1461-1473.
doi: 10.1038/onc.2016.304 pmid: 27617575
[12] Wang W H, Smits R, Hao H P, et al. Wnt/β-catenin signaling in liver cancers. Cancers, 2019, 11(7): 926.
doi: 10.3390/cancers11070926
[13] Li J P, Gong W L, Li X X, et al. Recent progress of Wnt pathway inhibitor dickkopf-1 in liver cancer. Journal of Nanoscience and Nanotechnology, 2018, 18(8): 5192-5206.
doi: 10.1166/jnn.2018.14636 pmid: 29458569
[14] Li S, Lavrijsen M, Bakker A, et al. Commonly observed RNF 43 mutations retain functionality in attenuating Wnt/β-catenin signaling and unlikely confer Wnt-dependency onto colorectal cancers. Oncogene, 2020, 39(17): 3458-3472.
doi: 10.1038/s41388-020-1232-5
[15] Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035): 843-850.
doi: 10.1038/nature03319
[16] Moon R T, Kohn A D, De Ferrari G V, et al. WNT and β-catenin signalling: diseases and therapies. Nature Reviews Genetics, 2004, 5(9): 691-701.
doi: 10.1038/nrg1427
[17] Luo W, Lin S C. Axin: a master scaffold for multiple signaling pathways. Neurosignals, 2004, 13(3): 99-113.
pmid: 15067197
[18] Duda P, Akula S M, Abrams S L, et al. Targeting GSK3 and associated signaling pathways involved in cancer. Cells, 2020, 9(5): 1110.
doi: 10.3390/cells9051110
[19] Garcia-Lezana T, Lopez-Canovas J L, Villanueva A. Signaling pathways in hepatocellular carcinoma. Advances in Cancer Research. Amsterdam: Elsevier, 2021: 63-101.
[20] Chatterjee S, Sil P C. Targeting the crosstalks of Wnt pathway with hedgehog and notch for cancer therapy. Pharmacological Research, 2019, 142: 251-261.
doi: S1043-6618(18)31586-X pmid: 30826456
[21] Dey A, Varelas X, Guan K L. Targeting the hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nature Reviews Drug Discovery, 2020, 19(7): 480-494.
doi: 10.1038/s41573-020-0070-z pmid: 32555376
[22] Azzolin L, Panciera T, Soligo S, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell, 2014, 158(1): 157-170.
doi: 10.1016/j.cell.2014.06.013 pmid: 24976009
[23] Imajo M, Miyatake K, Iimura A, et al. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. The EMBO Journal, 2012, 31(5): 1109-1122.
doi: 10.1038/emboj.2011.487
[24] Nowell C S, Radtke F. Notch as a tumour suppressor. Nature Reviews Cancer, 2017, 17(3): 145-159.
doi: 10.1038/nrc.2016.145 pmid: 28154375
[25] Vilchez V. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World Journal of Gastroenterology, 2016, 22(2): 823.
doi: 10.3748/wjg.v22.i2.823 pmid: 26811628
[26] Collu G M, Hidalgo-Sastre A, Brennan K. Wnt-Notch signalling crosstalk in development and disease. Cellular and Molecular Life Sciences, 2014, 71(18): 3553-3567.
doi: 10.1007/s00018-014-1644-x pmid: 24942883
[27] Fang S, Liu M, Li L, et al. Lymphoid enhancer-binding factor-1 promotes stemness and poor differentiation of hepatocellular carcinoma by directly activating the NOTCH pathway. Oncogene, 2019, 38(21): 4061-4074.
doi: 10.1038/s41388-019-0704-y pmid: 30696957
[28] Sarkar F H, Li Y W, Wang Z W, et al. The role of nutraceuticals in the regulation of Wnt and hedgehog signaling in cancer. Cancer and Metastasis Reviews, 2010, 29(3): 383-394.
doi: 10.1007/s10555-010-9233-4
[29] Farahmand L, Darvishi B, Majidzadeh-A K, et al. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on hedgehog and WNT/β-catenin signalling pathways. Cell Proliferation, 2017, 50(1): e12299.
[30] Mullor J L, Sánchez P, Altaba A R. Pathways and consequences: hedgehog signaling in human disease. Trends in Cell Biology, 2002, 12(12): 562-569.
pmid: 12495844
[31] Kerekes K, Trexler M, Bányai L, et al. Wnt inhibitory factor 1 binds to and inhibits the activity of sonic hedgehog. Cells, 2021, 10(12): 3496.
doi: 10.3390/cells10123496
[32] Luo K X. Signaling cross talk between TGF-β/smad and other signaling pathways. Cold Spring Harbor Perspectives in Biology, 2017, 9(1): a022137.
[33] Guo X, Wang X F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Research, 2009, 19(1): 71-88.
doi: 10.1038/cr.2008.302
[34] Patel K D, Nguyen D X. Condensing and constraining WNT by TGF-Β. Nature Cell Biology, 2021, 23(3): 213-214.
doi: 10.1038/s41556-021-00649-2 pmid: 33723426
[35] Tomar V S, Patil V, Somasundaram K. Temozolomide induces activation of Wnt/β-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biology and Toxicology, 2020, 36(3): 273-278.
doi: 10.1007/s10565-019-09502-7 pmid: 31758290
[36] Barzegar Behrooz A, Talaie Z, Jusheghani F, et al. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. International Journal of Molecular Sciences, 2022, 23(3): 1353.
doi: 10.3390/ijms23031353
[37] Suzuki M, Shigematsu H, Nakajima T, et al. Synchronous alterations of Wnt and epidermal growth factor receptor signaling pathways through aberrant methylation and mutation in non-small cell lung cancer. Clinical Cancer Research, 2007, 13(20):6087-6092.
doi: 10.1158/1078-0432.CCR-07-0591
[38] Wei S, Dai M M, Zhang C, et al. KIF2C: a novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma. Protein & Cell, 2021, 12(10): 788-809.
[39] Dahmani R, Just P A, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clinics and Research in Hepatology and Gastroenterology, 2011, 35(11): 709-713.
doi: 10.1016/j.clinre.2011.05.010 pmid: 21778132
[40] Ozcan M, Altay O, Lam S, et al. Improvement in the current therapies for hepatocellular carcinoma using a systems medicine approach. Advanced Biosystems, 2020, 4(6): e2000030.
[41] Mani S K K, Zhang H, Diab A, et al. EpCAM-regulated intramembrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes. Journal of Hepatology, 2016, 65(5): 888-898.
doi: S0168-8278(16)30208-2 pmid: 27238755
[42] Wands J R, Kim M. WNT/β-catenin signaling and hepatocellular carcinoma. Hepatology, 2014, 60(2): 452-454.
doi: 10.1002/hep.27081 pmid: 24644061
[43] Wang L, Yao M, Fang M, et al. Expression of hepatic Wnt5a and its clinicopathological features in patients with hepatocellular carcinoma. Hepatobiliary & Pancreatic Diseases International, 2018, 17(3): 227-232.
[44] Russell J O, Monga S P. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annual Review of Pathology: Mechanisms of Disease, 2018, 13: 351-378.
doi: 10.1146/pathmechdis.2018.13.issue-1
[45] Mavila, Thundimadathil. The emerging roles of cancer stem cells and Wnt/beta-catenin signaling in hepatoblastoma. Cancers, 2019, 11(10): 1406.
doi: 10.3390/cancers11101406
[46] Yao Z X, Mishra L. Cancer stem cells and hepatocellular carcinoma. Cancer Biology & Therapy, 2009, 8(18): 1691-1698.
[47] Mishra L, Banker T, Murray J, et al. Liver stem cells and hepatocellular carcinoma. Hepatology, 2009, 49(1): 318-329.
doi: 10.1002/hep.22704 pmid: 19111019
[48] Majumdar A, Curley S A, Wu X F, et al. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma. Nature Reviews Gastroenterology & Hepatology, 2012, 9(9): 530-538.
[49] Yamashita T, Ji J F, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 2009, 136(3): 1012-1024.
doi: 10.1053/j.gastro.2008.12.004 pmid: 19150350
[50] Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. Journal of Hepatology, 2016, 64(1): S84-S101.
doi: 10.1016/j.jhep.2016.02.021
[51] Lee T K W, Guan X Y, Ma S. Cancer stem cells in hepatocellular carcinoma: from origin to clinical implications. Nature Reviews Gastroenterology & Hepatology, 2022, 19(1): 26-44.
[52] Yamashita T, Budhu A, Forgues M, et al. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Research, 2007, 67(22): 10831-10839.
doi: 10.1158/0008-5472.CAN-07-0908 pmid: 18006828
[53] Wang C, Yang W, Yan H X, et al. Hepatitis B virus X (HBx) induces tumorigenicity of hepatic progenitor cells in 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine-treated HBx transgenic mice. Hepatology (Baltimore, Md), 2012, 55(1): 108-120.
doi: 10.1002/hep.24675
[54] Gurzu S, Kobori L, Fodor D, et al. Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review. BioMed Research International, 2019, 2019: 2962580.
[55] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 2014, 5(3): 178-196.
[56] 张青云, 傅俊江, 陈汉春. 上皮间质转化介导肿瘤转移的分子机制. 生命科学研究, 2018, 22(6): 503-510.
Zhang Q Y, Fu J J, Chen H C. The molecular mechanism of epithelial-mesenchymal transition mediating tumor metastasis. Life Science Research, 2018, 22(6): 503-510.
[57] Jin Y J, Wu D, Yang W W, et al. Hepatitis B virus x protein induces epithelial-mesenchymal transition of hepatocellular carcinoma cells by regulating long non-coding RNA. Virology Journal, 2017, 14(1): 238.
doi: 10.1186/s12985-017-0903-5 pmid: 29258558
[58] Miao C G, Yang Y Y, He X, et al. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie, 2013, 95(12): 2326-2335.
doi: 10.1016/j.biochi.2013.09.003
[59] Miao C G, Yang Y Y, He X, et al. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie, 2013, 95(12): 2326-2335.
doi: 10.1016/j.biochi.2013.09.003
[60] Yao B W, Li Y Z, Wang L, et al. MicroRNA-3194-3p inhibits metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by decreasing Wnt/β-catenin signaling through targeting BCL9. Artifical Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 3885-3895.
[61] Wu S S, Chen S, Lin N, et al. Long non-coding RNA SUMO1P 3 promotes hepatocellular carcinoma progression through activating Wnt/β-catenin signalling pathway by targeting miR-320a. Journal of Cellular and Molecular Medicine, 2020, 24(5): 3108-3116.
doi: 10.1111/jcmm.v24.5
[62] Zhang N B, Chen X. A positive feedback loop involving the LINC00346/β-catenin/MYC axis promotes hepatocellular carcinoma development. Cellular Oncology, 2020, 43(1): 137-153.
doi: 10.1007/s13402-019-00478-4 pmid: 31691159
[63] Wang H L, Ou J R, Jian Z X, et al. MiR-186 modulates hepatocellular carcinoma cell proliferation and mobility via targeting MCRS1-mediated Wnt/β-catenin signaling. Journal of Cellular Physiology, 2019, 234(12): 23135-23145.
doi: 10.1002/jcp.28878 pmid: 31140612
[64] Ma Y K, Shen T H, Yang X Y. Upregulation of LncRNA FAM83H-AS1 in hepatocellular carcinoma promotes cell proliferation, migration and invasion by Wnt/β-catenin pathway. European Review for Medical and Pharmacological Sciences, 2019, 23(18): 7855-7862.
doi: 18995 pmid: 31599410
[65] Zhang X D, Xu X L, Zhang Z C, et al. Linc-KILH potentiates Notch 1 signaling through inhibiting KRT19 phosphorylation and promotes the malignancy of hepatocellular carcinoma. International Journal of Biological Sciences, 2021, 17(3): 768-780.
doi: 10.7150/ijbs.52279
[66] Tan A C, Li Q X, Chen L Z. CircZFR promotes hepatocellular carcinoma progression through regulating miR-3619-5p/CTNNB1 axis and activating Wnt/β-catenin pathway. Archives of Biochemistry and Biophysics, 2019, 661: 196-202.
doi: S0003-9861(18)30674-X pmid: 30468709
[67] Kong S Z, Xue H, Li Y C, et al. The long noncoding RNA OTUD6B-AS 1 enhances cell proliferation and the invasion of hepatocellular carcinoma cells through modulating GSKIP/Wnt/β-catenin signalling via the sequestration of miR-664b-3p. Experimental Cell Research, 2020, 395(1): 112180.
[68] Huang G Q, Liang M, Liu H Y, et al. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death & Disease, 2020, 11(12): 1-14.
[69] Yang B M, Zhao J R, Huo T T, et al. Effects of CircRNA-ITCH on proliferation and apoptosis of hepatocellular carcinoma cells through inhibiting Wnt/β-catenin signaling pathway. Journal of BUON, 2020, 25(3): 1368-1374.
pmid: 32862578
[70] Xin R Q, Li W B, Hu Z W, et al. MiR-329-3p inhibits hepatocellular carcinoma cell proliferation and migration through USP22-Wnt/β-Catenin pathway. European Review for Medical Pharmacological Sciences, 2020, 24(19): 9932-9939.
[71] Wang X L, Shi M, Xiang T, et al. Long noncoding RNA DGCR5 represses hepatocellular carcinoma progression by inactivating Wnt signaling pathway. Journal of Cellular Biochemistry, 2019, 120(1): 275-282.
doi: 10.1002/jcb.v120.1
[72] Tang H, Zhao H, Yu Z Y, et al. MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/β-catenin signaling pathway. Digestive and Liver Disease, 2019, 51(9): 1314-1322.
doi: S1590-8658(19)30098-2 pmid: 30948333
[73] Han W J, Wang Q H, Zheng L S, et al. The role of lncRNA ANRIL in the progression of hepatocellular carcinoma. The Journal of Pharmacy and Pharmacology, 2021, 73(8): 1033-1038.
doi: 10.1093/jpp/rgaa047
[74] Gao J, Dai C, Yu X, et al. MicroRNA-485-5p inhibits the progression of hepatocellular carcinoma through blocking the WBP2/Wnt signaling pathway. Cellular Signalling, 2020, 66: 109466.
[75] Chi X B, Jiang Y, Chen Y B, et al. MicroR-505/heterogeneous nuclear ribonucleoprotein M inhibits hepatocellular carcinoma cell proliferation and induces cell apoptosis through the Wnt/β-catenin signaling pathway. Biomarkers in Medicine, 2020, 14(11): 981-996.
doi: 10.2217/bmm-2019-0511 pmid: 32940078
[76] Li D D, Zhang J W, Yang J, et al. CircMTO1 suppresses hepatocellular carcinoma progression via the miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling pathway and epithelial-to-mesenchymal transition. Cell Death & Disease, 2022, 13(1): 12.
[77] Hu X B, Wang R F, Ren Z G, et al. MiR-26b suppresses hepatocellular carcinoma development by negatively regulating ZNRD1 and Wnt/β-catenin signaling. Cancer Medicine, 2019, 8(17): 7359-7371.
doi: 10.1002/cam4.2613 pmid: 31637871
[78] 戴美琴, 蔡茁, 陈娜娜, 等. 苦参碱通过调控β-catenin信号通路抑制肝癌细胞干性. 南方医科大学学报, 2019, 39(10): 1239-1245.
Dai M Q, Cai Z, Chen N N, et al. Matrine suppresses stemness of hepatocellular carcinoma cells by regulating β-catenin signaling pathway. Journal of Southern Medical University, 2019, 39(10): 1239-1245.
[79] Yin H S, Que R S, Liu C Y, et al. Survivin-targeted drug screening platform identifies a matrine derivative WM-127 as a potential therapeutics against hepatocellular carcinoma. Cancer Letters, 2018, 425: 54-64.
doi: S0304-3835(18)30247-7 pmid: 29608986
[80] 朱云, 李成, 林鑫盛, 等. 白术多糖对肝癌细胞增殖及侵袭的抑制作用及其机制. 南方医科大学学报, 2019, 39(10): 1180-1185.
Zhu Y, Li C, Lin X S, et al. Effect of Atractylodes macrocephala polysaccharide on proliferation and invasion of hepatocellular carcinoma cells in vitro. Journal of Southern Medical University, 2019, 39(10): 1180-1185.
[81] Zeyada M S, Abdel-Rahman N, El-Karef A, et al. Niclosamide-loaded polymeric micelles ameliorate hepatocellular carcinoma in vivo through targeting Wnt and Notch pathways. Life Sciences, 2020, 261: 118458.
[82] Tan H Y, Wang N, Li S, et al. Repression of WT1-mediated LEF 1 transcription by mangiferin governs β-catenin-independent Wnt signalling inactivation in hepatocellular carcinoma. Cellular Physiology and Biochemistry, 2018, 47(5): 1819-1834.
doi: 10.1159/000491063
[83] Pan F F, Zheng Y B, Shi C J, et al. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma. European Journal of Pharmacology, 2021, 893: 173810.
[84] Kang Q Z, Gong J, Wang M F, et al. 6-C-(E-phenylethenyl)naringenin attenuates the stemness of hepatocellular carcinoma cells by suppressing Wnt/β-catenin signaling. Journal of Agricultural and Food Chemistry, 2019, 67(50): 13939-13947.
doi: 10.1021/acs.jafc.9b05733 pmid: 31769973
[85] Gong T, Ning X, Deng Z Y, et al. Propofol-induced miR-219-5p inhibits growth and invasion of hepatocellular carcinoma through suppression of GPC3-mediated Wnt/β-catenin signalling activation. Journal of Cellular Biochemistry, 2019, 120(10): 16934-16945.
doi: 10.1002/jcb.28952 pmid: 31104336
[86] Liao S T, Chen H Y, Liu M, et al. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging, 2020, 12(2): 1527-1544.
doi: 10.18632/aging.v12i2
[1] 李开通, 刘金青, 蔡望伟, 肖曼, 沈倍奋, 王晶, 冯健男. 靶向人白介素-6蛋白的治疗性单克隆抗体研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 58-67.
[2] 毕煦昆,郭成龙,赵建栋,任行全,柴威涛. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展*[J]. 中国生物工程杂志, 2022, 42(10): 70-79.
[3] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[4] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[5] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[6] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[7] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[8] 程雨涵,龚熹,罗玉萍. CD133(Prominin-1)的结构、功能及其相关抗体的研究进展 *[J]. 中国生物工程杂志, 2019, 39(5): 105-113.
[9] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[10] 徐燕,刘正芸,张琬棂,王盛羽,王欢. 靶向干扰TAGLN表达对HBV阳性肝癌细胞生物学行为的影响及机制初探 *[J]. 中国生物工程杂志, 2019, 39(11): 13-21.
[11] 钟鹏强,刘北忠,姚娟娟,刘冬冬,袁桢,刘俊梅,陈敏,钟梁. 敲低ACTL6A通过Notch1信号通路促进早幼粒细胞分化 *[J]. 中国生物工程杂志, 2018, 38(12): 1-6.
[12] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[13] 姜春莲, 汪艳璐, 罗玉萍. 成年哺乳动物神经发生的研究进展[J]. 中国生物工程杂志, 2017, 37(5): 107-112.
[14] 李爱芳, 谷月, 李雪茹, 孙晖, 查何, 谢佳卿, 赵佳丽, 周兰. 促宫颈癌细胞增殖、迁移及其可能机制研究[J]. 中国生物工程杂志, 2017, 37(2): 8-14.
[15] 刘静, 骆超超, 黄建国, 吴迪, 高学军, 刘玉芬. 14-3-3γ蛋白协同mTOR信号通路影响奶牛乳腺上皮细胞生理功能[J]. 中国生物工程杂志, 2015, 35(6): 32-39.