Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 123-132    DOI: 10.13523/j.cb.2209048
综述     
细胞催化技术生产醇类物质的研究进展*
张琰,刘袖洞()
大连大学环境与化学工程学院 大连 116622
Research Progress of Alcohol Production by Cell Catalytic Technology
ZHANG Yan,LIU Xiu-dong()
College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
 全文: PDF(481 KB)   HTML
摘要:

全细胞催化作为生物催化的一个重要分支,以完整的细胞为催化剂,避免了细胞裂解和酶纯化步骤,极大地削减了生产成本。同时,细胞壁成分可以保护胞内酶不受外界环境的影响,能够满足对催化剂的低成本和高稳定性的要求。对适宜乙醇、二醇、糖醇等醇类物质生产的菌株以及目前食品、化工工业中利用细胞催化技术生产醇类物质的应用进行综述,探讨提高醇类物质产量的生产策略,以期为细胞催化转化生产醇类物质的研究与工业开发提供参考。

关键词: 生物催化细胞催化乙醇二醇糖醇    
Abstract:

As an important part of biocatalysis, whole-cell catalysis uses whole cells as catalysts, which eliminates the need of cell lysis and enzyme purification in the process of alcohol production, and thus greatly reduces the cost of alcohol production. At the same time, the cell wall components can protect the trapped enzyme from potentially harmful environmental factors, thus meeting the production requirements of low cost and high stability of catalysts. According to the advantages of cell catalysis technology and the current market application prospects, the suitable strains for producing alcohol substances, such as ethanol, diol and sugar alcohol, were discussed. The alcohol production by using cell catalysis technology in food and chemical industries was reviewed. Finally, the production strategy of increasing alcohol yield was also discussed.

Key words: Biocatalysis    Cell catalysis    Ethanol    Glycol    Sugar alcohol
收稿日期: 2022-09-17 出版日期: 2023-05-04
ZTFLH:  Q819  
基金资助: 辽宁省教育厅高等学校基本科研项目(LJKZ1183)
通讯作者: **电子信箱:liuxiudong@dlu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张琰
刘袖洞

引用本文:

张琰, 刘袖洞. 细胞催化技术生产醇类物质的研究进展*[J]. 中国生物工程杂志, 2023, 43(4): 123-132.

ZHANG Yan, LIU Xiu-dong. Research Progress of Alcohol Production by Cell Catalytic Technology. China Biotechnology, 2023, 43(4): 123-132.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209048        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/123

产物 菌株 底物 产量/
(g·L-1)
得率
(g/g)
生产规模 参考文献
乙醇 酿酒酵母(S. cerevisiae WXY12) 葡萄糖和木糖 46.87 0.15 摇瓶 [8]
运动发酵单胞菌(DSM 473) 葡萄糖 47.93 0.475 摇瓶 [9]
产气大肠杆菌(TISTR 1468) 甘油和乙酸 32.1 0.125 100 mL生物反应器 [10]
酿酒酵母(S. cerevisiae) 玉米秸秆汁液 62.12 0.45 摇瓶 [11]
酿酒酵母(S. cerevisiae) 龙舌兰 (Agave tequilana)叶(一种农业残留物) 12.2±0.3 0.41 摇瓶 [12]
大肠杆菌(Escherichia coli SL100) 大麦秸秆 19.43 0.16 4.5 L生物反应器 [13]
假丝酵母(JCM 1644) 木质纤维素 55.64 0.45 摇瓶 [14]
2-苯乙醇 酿酒酵母(S. cerevisiae YS58) L-苯丙氨酸 6.3 0.7 5 L生物反应器 [15]
酿酒酵母(S. cerevisiae YS58) L-苯丙氨酸 3.73 0.68 摇瓶 [16]
酿酒酵母(S. cerevisiae MT2) L-苯丙氨酸 3.59 0.72 摇瓶 [17]
大肠杆菌(E. coli BW25113) L-苯丙氨酸 5.32 0.65 200 μL全细胞催化生物反应器 [18]
地衣芽孢杆菌(Bacillus licheniformis DW2) L-苯丙氨酸 5.16 0.65 摇瓶 [19]
酿酒酵母(S. cerevisiae zzuli-1) 烟草废料提取物 1.65 0.34 摇瓶 [20]
马克斯克鲁维酵母(Kluyveromyces marxianus) 甜乳清 1.2 0.39 摇瓶 [21]
1, 3-
丙二醇
肺炎克雷伯氏菌(Klebsiella pneumoniae) 葡萄糖和戊糖 20.88 0.69 摇瓶 [22]
肺炎克雷伯氏菌(K. pneumoniae) 葡萄糖和粗甘油 29.69 0.84 5 L生物反应器 [23]
丁酸梭菌(DSM 4278) 粗甘油 12.69±
0.9
0.35±
0.02
1.3 L生物反应器 [24]
罗伊氏乳杆菌(Lactobacillus reuteri CH53) 葡萄糖和甘油 68.32±
0.84
0.83±
0.02
5 L生物反应器 [25]
谷氨酸棒杆菌(Corynebacterium glutamicum) 葡萄糖和木糖 110.4 0.42 5 L生物反应器 [26]
酿酒酵母(S. cerevisiae) 甘油 3.58 0.15 摇瓶 [27]
2, 3-
丁二醇
肺炎克雷伯氏菌(K. pneumoniae) 葡萄糖 91 0.45 摇瓶 [28]
巴西类芽孢杆菌(Paenibacillus brasilensis PB24) 葡萄糖 27 0.43 摇瓶 [29]
路德维希肠杆菌(Enterobacter ludwigii) 蔗糖和甘蔗糖蜜 50.6 0.31 6.7 L生物反应器 [30]
地衣芽孢杆菌(B. licheniformis YNP5-TSU) 葡萄糖 99.3 0.41 1 L生物反应器 [31]
酿酒酵母(S. cerevisiae BY4741) 红海藻(Gmandium amansii)水解产物 14.8 0.3 50 mL不锈钢间歇式反应器 [32]
路德维希肠杆菌(E. ludwigii BW) 葡萄糖和富含葡萄糖的水解产物 144.5 0.47 2.5 L生物反应器 [33]
表1  微生物菌株生产醇类物质的概况
多元醇 微生物生产 底物 产量/(g·L-1) 生产规模 参考文献
赤藓糖醇 解脂耶氏酵母 甘油 81.9 5 L生物反应器 [39]
真菌花粉念珠菌(Moniliella pollinis) 甘蔗汁和糖蜜 94.9 5 L生物反应器 [40]
嗜渗透酵母(Moniliella sp. BCC25224) 葡萄糖 138 10 L生物反应器 [41]
甘露糖醇 念珠菌(SK 26.001) 葡萄糖 97.1 30 L生物反应器 [36]
青霉菌(Penicillium sp. T2-M10) 葡萄糖 1.26 摇瓶 [37]
假肠系膜明串珠菌(CTCC G123) 葡萄糖 88.1 3 L生物反应器 [42]
山梨糖醇 运动发酵单胞菌(ZM4) 蔗糖 45.62±2.7 2 L生物反应器 [43]
耐热运动发酵单胞菌(TISTR548) 甘蔗渣和木薯浆水解产物 5.89 摇瓶 [44]
木糖醇 假单胞菌(BSX-46) 木糖 35.2 3 L生物反应器 [45]
酿酒酵母(S. cerevisiae) 木糖母液和玉米芯残渣 91 1.4 L生物反应器 [46]
工程化酿酒酵母 木糖 12.4 摇瓶 [47]
表2  微生物催化生产糖醇概况
[1] 刘洪玉. 代谢工程改造微生物生产1,3-丙二醇和2-苯乙醇的研究. 上海: 上海交通大学, 2019.
Liu H Y. Biological production of 1, 3-propanediol and 2-phenylethanol by metabolic engineering. Shanghai: Shanghai Jiao Tong University, 2019.
[2] 霍晓静, 黄建忠, 李力. 全细胞催化技术在制药领域中的应用. 药物生物技术, 2019, 26(4): 352-356.
Huo X J, Huang J Z, Li L. Application of whole cell catalysis technique in pharmaceutical field. Pharmaceutical Biotechnology, 2019, 26(4): 352-356.
[3] Tufvesson P, Lima-Ramos J, Nordblad M, et al. Guidelines and cost analysis for catalyst production in biocatalytic processes. Organic Process Research & Development, 2011, 15(1): 266-274.
[4] 许翠, 高梦祥. 微生物菌种诱变筛选方法及其应用. 长江大学学报(自科版), 2013, 10(35): 56-60.
Xu C, Gao M X. Mutation screening method of microbial strains and its application. Journal of Yangtze University (Natural Science Edition), 2013, 10(35): 56-60.
[5] Liu H Y, Wu X X, Ma H, et al. High-level production of hydroxytyrosol in engineered Saccharomyces cerevisiae. ACS Synthetic Biology, 2022, 11(11): 3706-3713.
doi: 10.1021/acssynbio.2c00316
[6] Yang C, Ying X X, Yu M L, et al. Towards the discovery of alcohol dehydrogenases: NAD(P)H fluorescence-based screening and characterization of the newly isolated Rhodococcus erythropolis WZ 010 in the preparation of chiral aryl secondary alcohols. Journal of Industrial Microbiology & Biotechnology, 2012, 39(10): 1431-1443.
[7] Orencio-Trejo M, Flores N, Escalante A, et al. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities. Biotechnology for Biofuels, 2008, 1(1): 8.
doi: 10.1186/1754-6834-1-8 pmid: 18471274
[8] Zhao W X, Zhao F G, Zhang S T, et al. Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk. Journal of Basic Microbiology, 2019, 59(7): 744-753.
doi: 10.1002/jobm.201900117 pmid: 31087563
[9] Palamae S, Choorit W, Chatsungnoen T, et al. Simultaneous nitrogen fixation and ethanol production by Zymomonas mobilis. Journal of Biotechnology, 2020, 314-315: 41-52.
[10] Sawasdee V, Vikromvarasiri N, Pisutpaisal N. Optimization of ethanol production from co-substrate of waste glycerol and acetic acid by Enterobacter aerogenes. Biomass Conversion and Biorefinery, 2021. http://dio.org/10.1007/S13399-021-01844-9.
[11] Bautista K, Unpaprom Y, Junluthin P, et al. Ethanol production from corn stalk juice by Saccharomyces cerevisiae immobilized yeast using a green method. Biomass Conversion and Biorefinery, 2022. http://doi.org/10.1007/S13399-021-02261-8.
[12] Avila-Gaxiola J C, Avila-Gaxiola E. Ethanol production from Agave tequilana leaves powder by Saccharomyces cerevisiae yeast applying enzymatic saccharification without detoxification. Industrial Crops and Products, 2022, 177: 114515.
[13] Díaz M J, Moya M, Castro E. Bioethanol production from steam-exploded barley straw by co-fermentation with Escherichia coli SL100. Agronomy, 2022, 12(4): 874.
doi: 10.3390/agronomy12040874
[14] Pant S, Prakash A, Kuila A. Integrated production of ethanol and xylitol from Brassica juncea using Candida sojae JCM 1644. Bioresource Technology, 2022, 351: 126903.
[15] Wang Z Y, Jiang M Y, Guo X N, et al. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microbial Cell Factories, 2018, 17(1): 60.
doi: 10.1186/s12934-018-0907-x
[16] Wang Z Y, Bai X J, Guo X N, et al. Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 2017, 44(1): 129-139.
[17] Chen X R, Wang Z Y, Guo X N, et al. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway. Journal of Biotechnology, 2017, 242: 83-91.
doi: S0168-1656(16)31628-5 pmid: 27908775
[18] Wang P C, Yang X W, Lin B X, et al. Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metabolic Engineering, 2017, 44: 143-149.
doi: S1096-7176(17)30103-9 pmid: 28951189
[19] Zhan Y Y, Zhou M L, Wang H, et al. Efficient synthesis of 2-phenylethanol from L-phenylalanine by engineered Bacillus licheniformis using molasses as carbon source. Applied Microbiology and Biotechnology, 2020, 104(17): 7507-7520.
doi: 10.1007/s00253-020-10740-7
[20] Ye J, Tian S, Lv L, et al. Production and purification of 2-phenylethanol by Saccharomyces cerevisiae using tobacco waste extract as a substrate. Letters in Applied Microbiology, 2021, 73(6): 800-806.
doi: 10.1111/lam.v73.6
[21] Alonso-Vargas M, Téllez-Jurado A, Gómez-Aldapa C A, et al. Optimization of 2-phenylethanol production from sweet whey fermentation using Kluyveromyces marxianus. Fermentation, 2022, 8(2): 39.
doi: 10.3390/fermentation8020039
[22] Vivek N, Christopher M, Kumar M K, et al. Pentose rich acid pretreated liquor as co-substrate for 1, 3-propanediol production. Renewable Energy, 2018, 129: 794-799.
doi: 10.1016/j.renene.2017.01.055
[23] Chen W C, Chuang C J, Chang J S, et al. Exploring dual-substrate cultivation strategy of 1, 3-propanediol production using Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 2020, 191(1): 346-359.
doi: 10.1007/s12010-019-03208-6
[24] Dolejš I, Líšková M, Krasňan V, et al. Production of 1, 3-propanediol from pure and crude glycerol using immobilized Clostridium butyricum. Catalysts, 2019, 9(4): 317.
doi: 10.3390/catal9040317
[25] Ju J H, Wang D X, Heo S Y, et al. Enhancement of 1, 3-propanediol production from industrial by-product by Lactobacillus reuteri CH53. Microbial Cell Factories, 2020, 19(1): 6.
doi: 10.1186/s12934-019-1275-x
[26] Li Z H, Dong Y F, Liu Y, et al. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1, 3-propanediol from glucose and xylose. Metabolic Engineering, 2022, 70: 79-88.
doi: 10.1016/j.ymben.2022.01.006
[27] Asopa R P, Ikram M M, Saharan V K. Valorization of glycerol into 1, 3-propanediol and organic acids using biocatalyst Saccharomyces cerevisiae. Bioresource Technology Reports, 2022, 18: 101084.
[28] Rathnasingh C, Park J M, Kim D K, et al. Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2, 3-butanediol production. Biotechnology Letters, 2016, 38(6): 975-982.
doi: 10.1007/s10529-016-2062-y
[29] do Carmo Dias B, do Nascimento Vitorino Lima M E, Vollú R E, et al. 2, 3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis. Applied Microbiology and Biotechnology, 2018, 102(20): 8773-8782.
doi: 10.1007/s00253-018-9312-y
[30] Psaki O, Maina S, Vlysidis A, et al. Optimisation of 2, 3-butanediol production by Enterobacter ludwigii using sugarcane molasses. Biochemical Engineering Journal, 2019, 152: 107370.
[31] O’Hair J, Jin Q, Yu D J, et al. Thermophilic and alkaliphilic Bacillus licheniformis YNP5-TSU as an ideal candidate for 2, 3-butanediol production. ACS Sustainable Chemistry & Engineering, 2020, 8(30): 11244-11252.
[32] Ra C H, Seo J H, Jeong G T, et al. Evaluation of 2, 3-butanediol production from red seaweed Gelidium amansii hydrolysates using engineered Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 2020, 30(12): 1912-1918.
doi: 10.4014/jmb.2007.07037
[33] Narisetty V, Zhang L, Zhang J X, et al. Fermentative production of 2, 3-butanediol using bread waste-a green approach for sustainable management of food waste. Bioresource Technology, 2022, 358: 127381.
[34] Saleski T E, Kerner A R, Chung M T, et al. Syntrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metabolic Engineering, 2019, 54: 232-243.
doi: S1096-7176(19)30018-7 pmid: 31034921
[35] Martínez-Avila O, Sánchez A, Font X, et al. Fed-batch and sequential-batch approaches to enhance the bioproduction of 2-phenylethanol and 2-phenethyl acetate in solid-state fermentation residue-based systems. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3389-3399.
doi: 10.1021/acs.jafc.9b00524 pmid: 30816043
[36] Meng Q, Zhang T, Wei W T, et al. Production of mannitol from a high concentration of glucose by Candida parapsilosis SK26.001. Applied Biochemistry and Biotechnology, 2017, 181(1): 391-406.
doi: 10.1007/s12010-016-2219-0
[37] Duan R T, Li H T, Li H Y, et al. Enhancing the production of D-mannitol by an artificial mutant of Penicillium sp. T2-M10. Applied Biochemistry and Biotechnology, 2018, 186(4): 990-998.
doi: 10.1007/s12010-018-2791-6
[38] Lu X Y, Wang Y Q, Zong H, et al. Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5. Bioengineered, 2016, 7(6): 418-423.
doi: 10.1080/21655979.2016.1171437
[39] Rakicka M, Rukowicz B, Rywińska A, et al. Technology of efficient continuous erythritol production from glycerol. Journal of Cleaner Production, 2016, 139: 905-913.
doi: 10.1016/j.jclepro.2016.08.126
[40] Deshpande M S, Kulkarni P P, Kumbhar P S, et al. Erythritol production from sugar based feedstocks by Moniliella pollinis using lysate of recycled cells as nutrients source. Process Biochemistry, 2022, 112: 45-52.
doi: 10.1016/j.procbio.2021.11.020
[41] Suwanapetch C, Vanichsriratana W. Media optimization for erythritol production by Moniliella sp. BCC25224. Sugar Tech, 2023, 25(1): 257-261.
doi: 10.1007/s12355-022-01178-4
[42] Zhang M, Gu L, Cheng C, et al. High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G 123 from chicory-derived inulin hydrolysate. Journal of Industrial Microbiology & Biotechnology, 2017, 44(8): 1237-1244.
[43] Braga A, Gomes D, Amorim C, et al. One-step production of a novel prebiotic mixture using Zymomonas mobilis ZM4. Biochemical Engineering Journal, 2022, 183: 108443.
[44] Chamnipa N, Klanrit P, Thanonkeo S, et al. Sorbitol production from a mixture of sugarcane bagasse and cassava pulp hydrolysates using thermotolerant Zymomonas mobilis TISTR548. Industrial Crops and Products, 2022, 188: 115741.
[45] Lugani Y, Sooch B S. Fermentative production of xylitol from a newly isolated xylose reductase producing Pseudomonas putida BSX-46. LWT, 2020, 134: 109988.
[46] He Y, Li H X, Chen L Y, et al. Production of xylitol by Saccharomyces cerevisiae using waste xylose mother liquor and corncob residues. Microbial Biotechnology, 2021, 14(5): 2059-2071.
doi: 10.1111/mbt2.v14.5
[47] Songdech P, Intasit R, Yingchutrakul Y, et al. Activation of cryptic xylose metabolism by a transcriptional activator Znf 1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene. Microbial Cell Factories, 2022, 21(1): 32.
doi: 10.1186/s12934-022-01757-w
[48] Mirończuk A M, Rakicka M, Biegalska A, et al. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresource Technology, 2015, 198: 445-455.
doi: 10.1016/j.biortech.2015.09.008
[49] Tomaszewska L, Rywińska A, Gładkowski W. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. Journal of Industrial Microbiology & Biotechnology, 2012, 39(9): 1333-1343.
[50] Liu C J, Dong H W, Zhong J J, et al. Sorbitol production using recombinant Zymomonas mobilis strain. Journal of Biotechnology, 2010, 148(2-3): 105-112.
doi: 10.1016/j.jbiotec.2010.04.008
[51] Carneiro C V G C, de Paula E Silva F C, Almeida J R M. Xylitol production: identification and comparison of new producing yeasts. Microorganisms, 2019, 7(11): 484.
doi: 10.3390/microorganisms7110484
[52] Abd Rahman N H, Jahim J M, Abdul Munaim M S, et al. Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme and Microbial Technology, 2020, 135: 109495.
[53] Huang X C, Bai S W, Liu Z, et al. Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: direct high-density ethanol production with competitive life cycle impacts. Green Chemistry, 2020, 22(1): 153-162.
doi: 10.1039/C9GC02634G
[54] Jetti K D, Gns R R, Garlapati D, et al. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. International Microbiology, 2019, 22(2): 247-254.
doi: 10.1007/s10123-018-00044-2
[55] Szambelan K, Szwengiel A, Nowak J, et al. Low-waste technology for the production of bioethanol from sorghum grain: comparison of Zymomonas mobilis and Saccharomyces cerevisiae in fermentation with stillage reusing. Journal of Cleaner Production, 2022, 352: 131607.
[56] 李晓姝, 张霖, 高大成, 等. 发酵法生产1, 3-丙二醇的研究进展. 化工进展, 2017, 36(4): 1395-1403.
Li X S, Zhang L, Gao D C, et al. Progress on the production of 1, 3-propanediol by fermentation. Chemical Industry and Engineering Progress, 2017, 36(4): 1395-1403.
[57] Gungormusler-Yilmaz M, Shamshurin D, Grigoryan M, et al. Reduced catabolic protein expression in Clostridium butyricum DSM 10702 correlate with reduced 1, 3-propanediol synthesis at high glycerol loading. AMB Express, 2014, 4: 63.
doi: 10.1186/s13568-014-0063-6 pmid: 25401066
[58] Zhou S, Li L L, Perseke M, et al. Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1, 3-propanediol. Science Bulletin, 2015, 60(5): 511-521.
doi: 10.1007/s11434-015-0742-y
[59] Sato R, Tanaka T, Ohara H, et al. Engineering Escherichia coli for direct production of 1, 2-propanediol and 1, 3-propanediol from starch. Current Microbiology, 2020, 77(11): 3704-3710.
doi: 10.1007/s00284-020-02189-8
[60] Tabah B, Varvak A, Pulidindi I N, et al. Production of 1, 3-propanediol from glycerol via fermentation by Saccharomyces cerevisiae. Green Chemistry, 2016, 18(17): 4657-4666.
doi: 10.1039/C6GC00125D
[61] Martins F F, da S S Liberato V, Ribeiro C M S, et al. Low-cost medium for 1, 3-propanediol production from crude glycerol by Clostridium butyricum. Biofuels, Bioproducts and Biorefining, 2020, 14(5): 1125-1134.
doi: 10.1002/bbb.v14.5
[62] Song C W, Park J M, Chung S C, et al. Microbial production of 2, 3-butanediol for industrial applications. Journal of Industrial Microbiology & Biotechnology, 2019, 46(11): 1583-1601.
[63] Stark D, Zala D, Münch T, et al. Inhibition aspects of the bioconversion of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2003, 32(2): 212-223.
doi: 10.1016/S0141-0229(02)00237-5
[64] Arora R, Behera S, Sharma N K, et al. Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates. Renewable Energy, 2017, 109: 406-421.
doi: 10.1016/j.renene.2017.03.059
[65] Kumar R, Ghosh A K, Pal P. Fermentative ethanol production from Madhuca indica flowers using immobilized yeast cells coupled with solar driven direct contact membrane distillation with commercial hydrophobic membranes. Energy Conversion and Management, 2019, 181: 593-607.
doi: 10.1016/j.enconman.2018.12.050
[66] Wang Q, Song Y F, Jin Y R, et al. Biosynthesis of 2-phenylethanol using tobacco waste as feedstock. Biocatalysis and Biotransformation, 2013, 31(6): 292-298.
doi: 10.3109/10242422.2013.857315
[67] Wen Z Q, Ledesma-Amaro R, Lu M R, et al. Metabolic engineering of Clostridium cellulovorans to improve butanol production by consolidated bioprocessing. ACS Synthetic Biology, 2020, 9(2): 304-315.
doi: 10.1021/acssynbio.9b00331
[68] Cabulong R B, Valdehuesa K N, Ramos K R, et al. Enhanced yield of ethylene glycol production from D-xylose by pathway optimization in Escherichia coli. Enzyme and Microbial Technology, 2017, 97: 11-20.
doi: S0141-0229(16)30224-1 pmid: 28010767
[69] Li H, Liao J C. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1, 2-propanediol. Microbial Cell Factories, 2013, 12: 4.
doi: 10.1186/1475-2859-12-4
[70] Wang C, Xin F X, Kong X P, et al. Enhanced isopropanol-butanol-ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant Clostridium acetobutylicum XY16. Biotechnology for Biofuels, 2018, 11: 12.
doi: 10.1186/s13068-018-1024-0
[71] Kim J W, Kim J, Seo S O, et al. Enhanced production of 2, 3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechnology for Biofuels, 2016, 9: 265.
doi: 10.1186/s13068-016-0677-9
[72] Wang M, Zhou Y O, Tan T W. Cofactor engineering for enhanced production of diols by Klebsiella pneumoniae from co-substrate. Biotechnology Journal, 2017, 12(11): 1700176.
[73] Lin J L, Ekas H, Markham K, et al. An enzyme-coupled assay enables rapid protein engineering for geraniol production in yeast. Biochemical Engineering Journal, 2018, 139: 95-100.
doi: 10.1016/j.bej.2018.08.011
[1] 黄明珠,姚坤,宋卓琳,张豪,刘斌,陈雪岚. 细胞表面展示技术在环境修复方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 105-115.
[2] 卞一凡,刘姝晗,张贝萌,张玉龙,李辛桐,王鹏超. 微生物合成2-苯乙醇研究进展*[J]. 中国生物工程杂志, 2022, 42(8): 128-136.
[3] 陈涛,刘志华,李霞,谢泽雄. 抑制剂耐受性酵母底盘细胞的设计与构建*[J]. 中国生物工程杂志, 2022, 42(1/2): 1-13.
[4] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[5] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[6] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[7] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[8] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[9] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[10] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[11] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[12] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[13] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[14] 樊亚超,张霖,李晓姝,王鹏翔,姚新武,乔凯. Klebsiella pneumoniae CICC10011发酵产2,3-丁二醇的工艺研究[J]. 中国生物工程杂志, 2018, 38(2): 68-74.
[15] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.