Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (10): 12-18    DOI: 10.13523/j.cb.2105046
研究报告     
抗菌肽Cec4a的重组表达和抗菌活性研究*
陈素芳1,夏明印1,曾丽艳1,安晓琴1,田敏芳1,彭建1,2,**()
1 贵州医科大学生物与工程学院/基础医学院 贵阳 550025
2 环境污染与疾病监控教育部重点实验室 贵阳 550025
Recombinant Expression and Detection of Antimicrobial Activity of Cec4a
CHEN Su-fang1,XIA Ming-yin1,ZENG Li-yan1,AN Xiao-qin1,TIAN Min-fang1,PENG Jian1,2,**()
1 School of Biology and Medical Engineering/Basic Medical College,Guizhou Medical University,Guiyang 550025,China
2 Key Laboratory of Environmental Pollution and Disease Control of Ministry of Education, Guiyang 550025,China
 全文: PDF(992 KB)   HTML
摘要:

目的:构建Cec4a的原核重组表达体系,通过诱导表达、酶切纯化获得重组蛋白,并检测产物的抗菌活性。方法:基于Cec4a的序列设计引物,克隆Cec4a基因的DNA片段。利用原核表达载体(pCold-SUMO)构建重组原核表达质粒,并将其转化到大肠杆菌C41(DE3)等感受态细胞,使用IPTG进行诱导表达。通过Ni-NTA亲和层析柱纯化,获得含有His-SUMO标签的重组Cec4a融合蛋白。在SUMO蛋白酶酶切后,再次使用Ni-NTA亲和层析纯化,得到目的蛋白,最后用鲍曼不动杆菌(ATCC19606)作为指示菌检测表达产物的抗菌活性。结果:成功构建pCold-SUMO-Cec4a原核表达质粒,测序分析其序列与预期结果一致。Cec4a融合蛋白表达量为42.8mg/L,纯化后的Cec4a重组蛋白对鲍曼不动杆菌的MIC为4 μg/mL。结论:通过原核表达,并经Ni-NTA亲和层析纯化,获得了具有抗菌活性的重组蛋白Cec4a,为研究Cec4a的生物活性、抗菌机制及应用奠定了基础。

关键词: Cec4aSUMO鲍曼不动杆菌重组表达    
Abstract:

Objective: To construct the recombinant expression system of Cec4a, and to obtain the recombinant protein by induced expression and detect the antibacterial activity of the product. Methods: Based on the primers designed according to the sequence of Cec4a, the mature peptide part of Cec4a gene was amplified by PCR. Recombinant prokaryotic expression plasmid was constructed using prokaryotic expression vector (pCold-SUMO) and transformed into E. coli C41 (DE3) competent cells, which were induced by IPTG. His-SUMO labeled recombinant Cec4a fusion protein was purified by Ni-NTA affinity chromatography. The target protein was purified by Ni-NTA affinity chromatography after SUMO protease digestion. Acinetobacter baumannii (ATCC19606) was used to detect the antibacterial activity of the product. Results: pCold-SUMO-Cec4a prokaryotic expression plasmid was successfully constructed, and the sequencing analysis was consistent with the expected results. The expression level of Cec4a fusion protein was 42.8mg/L, and the MIC of purified Cec4a recombinant protein against Acinetobacter baumannii was 4 μg/mL. Conclusion: The recombinant Cec4a protein with antibacterial activity was successfully constructed and purified by Ni-NTA affinity chromatography. It lays a foundation for further study on the biological activity, the relationship between the structure and function of Cec4a.

Key words: Cec4a    SUMO    Acinetobacter baumannii    Recombinant expression
收稿日期: 2021-05-25 出版日期: 2021-11-08
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(82002180);贵州省科技厅科技支撑计划(黔科合支撑[2019]2823号);贵州省高等学校教学内容和课程体系改革项目(2019046);大学生创新训练项目(20195200150);大学生创新训练项目(20195200931)
通讯作者: 彭建     E-mail: pjf66666@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈素芳
夏明印
曾丽艳
安晓琴
田敏芳
彭建

引用本文:

陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.

CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a. China Biotechnology, 2021, 41(10): 12-18.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2105046        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I10/12

氨基酸 原始密码子 优化密码子
(使用率)
氨基酸 原始密码子 优化密码子
(使用率)
Gly GGA GGT(23.7%) Leu TTA CTG(37.4%)
Lys AAA AAG(15.3%) Val GTT GTG(19.9%)
Gly GGC GGT(23.7%) Asn AAC AAT(29.3%)
Thr ACA ACC(18.9%) Ala GCC GCA(23%)
Gln CAA CAG(26.7%) Ala GCG GCC(21.6%)
Phe ACA TTT(24.4%) Leu TTG CTG(37.4%)
Lys AAG AAA(37.2%) Gly GGG GGT(23.7%)
表1  密码子优化
图1  Cec4a片段的密码子优化
图2  Cec4a片段的PCR扩增
图3  融合蛋白的SDS-PAGE分析
图4  融合蛋白纯化后SDS-PAGE分析
图5  目的蛋白酶切
图6  目的蛋白纯化
Peptides MHB NaCl(150 mmol/L) CaCl2(2 mmol/L) Serum (5%)
Cec4a(chemical synthesis) 2 2 2 4
Cec4a(recombinant expression) 4 4 4 8
表2  盐和血清对抗鲍曼不动杆菌肽活性的影响,MIC(μg/mL)
图7  透射电镜显示抗菌肽Cec4a能在1~3 h导致鲍曼不动杆菌裂解
[1] Fang S L, Wang L, Fang Q, et al. Characterization and functional study of a Cecropin-like peptide from the Chinese oak silkworm, Antheraea pernyi. Archives of Insect Biochemistry and Physiology, 2017, 94(1): e21368.
doi: 10.1002/arch.v94.1
[2] Zhou J, Fang N N, Zheng Y, et al. Identification and characterization of two novel C-type lectins from the larvae of housefly, Musca domestica L. Archives of Insect Biochemistry and Physiology, 2018, 98(3): e21467.
doi: 10.1002/arch.v98.3
[3] Lee C R, Lee J H, Park M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 2017, 7: 55.
[4] Eraç B, Yilmaz F F, Hosgör Limoncu M, et al. Investigation of the virulence factors of multidrug-resistant Acinetobacter baumannii isolates. Mikrobiyoloji Bulteni, 2014, 48(1): 70-81.
doi: 10.5578/mb.6981
[5] 彭建, 赵行行, 吴兆颖, 等. 抗菌肽Cec4的结构改造及抗菌活性研究. 生物技术, 2019, 29(4): 330-335.
Peng J, Zhao X X, Wu Z Y, et al. Structural modification and antibacterial related activity study of antimicrobial peptide Cec4. Biotechnology, 2019, 29(4): 330-335.
[6] Ptaszyńska N, Olkiewicz K, Okońska J, et al. Peptide conjugates of lactoferricin analogues and antimicrobials-design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides, 2019, 117: 170079.
doi: S0196-9781(19)30037-3 pmid: 30959143
[7] Panavas T, Sanders C, Butt T R. SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods in Molecular Biology (Clifton, N J), 2009, 497: 303-317.
[8] Kim D S, Kim S W, Song J M, et al. A new prokaryotic expression vector for the expression of antimicrobial peptide abaecin using SUMO fusion tag. BMC Biotechnology, 2019, 19(1): 13.
doi: 10.1186/s12896-019-0506-x
[9] 刘杞, 石小枫, 罗娅, 等. 重组人肝再生增强因子原核表达载体的构建及其在大肠杆菌中的表达. 中华肝脏病杂志, 2000, 8(1): 9-11.
pmid: 10712774
Liu Q, Shi X F, Luo Y, et al. Construction of prokaryotic expression vector of hALR and its expression in E.coli. Chinese Journal of Hepatology, 2000, 8(1): 9-11.
pmid: 10712774
[10] Rajan R, Weisshaar J C. Insights into the effects of antimicrobial peptides on live E. coli cells using time-lapse fluorescence microscopy. Biophysical Journal, 2015, 108(2): 548a.
[11] Kaur K, Park H, Pandey N, et al. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy. Journal of Biological Chemistry, 2017, 292(24): 10230-10238.
doi: 10.1074/jbc.M117.789982
[12] Cuijpers S A G, Willemstein E, Vertegaal A C O. Converging small ubiquitin-like modifier (SUMO) and ubiquitin signaling: improved methodology identifies co-modified target proteins. Molecular & Cellular Proteomics, 2017, 16(12): 2281-2295.
doi: 10.1074/mcp.TIR117.000152
[13] Lao M X, Zhan Z P, Li N, et al. Role of small ubiquitin-like modifier proteins-1 (SUMO-1) in regulating migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Experimental Cell Research, 2019, 375(1): 52-61.
doi: 10.1016/j.yexcr.2018.12.011
[14] Wang Z F, Zhu W G, Xu X Z. Ubiquitin-like modifications in the DNA damage response. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 803-805: 56-75.
doi: 10.1016/j.mrfmmm.2017.07.001
[15] Oravcová M, Boddy M N. Recruitment, loading, and activation of the Smc5-Smc6 SUMO ligase. Current Genetics, 2019, 65(3): 669-676.
doi: 10.1007/s00294-018-0922-9 pmid: 30600397
[16] Lamberti A, Sanges C, Longo O, et al. Analysis of nickel-binding peptides in a human hepidermoid cancer cell line by Ni-NTA affinity chromatography and mass spectrometry. Protein and Peptide Letters, 2008, 15(10): 1126-1131.
doi: 10.2174/092986608786071157
[17] Moser A C, White B, Kovacs F A. Measuring binding constants of his-tagged proteins using affinity chromatography and Ni-NTA-immobilized enzymes. Methods in Molecular Biology (Clifton, N J), 2014, 1129: 423-434.
[18] Hara N, Futo S, Sekiguchi S, et al. A new method to obtain high DNA transformation efficiency of E.coli competent cells. Nucleic Acids Research, 1988, 16(17): 8727.
pmid: 3047689
[19] Yu D D, Wang Y, Zhang S Q, et al. An ultrasensitive stain for negative protein detection in SDS-PAGE via 4', 5'-dibromofluorescein. Journal of Proteomics, 2017, 165: 21-25.
doi: 10.1016/j.jprot.2017.06.014
[20] Kinoshita E, Kinoshita-Kikuta E, Koike T. Zn(II)-Phos-tag SDS-PAGE for separation and detection of a DNA damage-related signaling large phosphoprotein. Methods in Molecular Biology (Clifton, N J), 2017, 1599: 113-126.
[21] 张雪洋, 赵华, 赵红宇, 等. 人釉原蛋白基因在大肠杆菌中的融合表达. 华西口腔医学杂志, 2008, 26(1): 27-30.
Zhang X Y, Zhao H, Zhao H Y, et al. Expression and purification of human amelogenin in Escherichia coli. West China Journal of Stomatology, 2008, 26(1): 27-30.
[22] 姚玲玲, 王家宁, 黄永章, 等. pET15b-PEP-1-CAT原核表达质粒的构建及PEP-1-CAT融合蛋白的表达与纯化. 南方医科大学学报, 2006, 26(9): 1319-1325.
Yao L L, Wang J N, Huang Y Z, et al. Construction of prokaryotic expression plasmid pET15b-PEP-1-CAT and expression and purification of PEP-1-CAT fusion protein. Journal of Southern Medical University, 2006, 26(9): 1319-1325.
[23] 史鹏伟, 高艳彬, 卢志阳, 等. 抗菌肽LL-37对鲍曼不动杆菌生物膜的抑制作用. 南方医科大学学报, 2014, 34(3): 426-429.
Shi P W, Gao Y B, Lu Z Y, et al. Effect of antibacterial peptide LL-37 on the integrity of Acinetobacter baumannii biofilm. Journal of Southern Medical University, 2014, 34(3): 426-429.
[24] Molchanova N, Hansen P, Franzyk H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules, 2017, 22(9): 1430.
doi: 10.3390/molecules22091430
[25] Chionis K, Krikorian D, Koukkou A I, et al. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin. Journal of Peptide Science, 2016, 22(11-12): 731-736.
doi: 10.1002/psc.2939 pmid: 27862650
[26] 张辉, 段招军, 朱建高, 等. 人新型干扰素κ的基因克隆、表达、纯化及其抗病毒活性的初步研究. 中华实验和临床病毒学杂志, 2005, 19(3): 223-226.
pmid: 16261202
Zhang H, Duan Z J, Zhu J G, et al. Cloning, expression and purification of interferon-kappa, a novel human interferon, and its antiviral activity. Chinese Journal of Experimental and Clinical Virology, 2005, 19(3): 223-226.
pmid: 16261202
[27] Peleg Y, Unger T. Resolving bottlenecks for recombinant protein expression in E. coli. Methods in Molecular Biology (Clifton, N J), 2012, 800: 173-186.
[28] Gileadi O. Recombinant protein expression in E. coli: a historical perspective. Methods in Molecular Biology (Clifton, N J), 2017, 1586: 3-10.
[29] 赵少若, 王孟月, 白晶晶, 等. 非洲猪瘟病毒DP96R蛋白的表达与单克隆抗体的制备. 畜牧与兽医, 2021, 53(2): 77-81.
Zhao S R, Wang M Y, Bai J J, et al. Expression and monoclonal antibody preparation of the DP96R recombinant protein of African swine fever virus. Animal Husbandry & Veterinary Medicine, 2021, 53(2): 77-81.
[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[3] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[4] 韩挺翰,龚雪梅,郦娟,丁亚芳,卢辰,张坤晓,高嵩,许恒皓. 一种来源于大菱鲆的热敏型尿嘧啶DNA糖苷酶的克隆表达及酶学性质鉴定 *[J]. 中国生物工程杂志, 2019, 39(10): 34-43.
[5] 李诗洁,杨艳坤,刘萌,白仲虎,金坚. SUMO蛋白酶Ulp1的高效表达纯化并通过His-SUMO标签制备scFv *[J]. 中国生物工程杂志, 2018, 38(3): 51-61.
[6] 王曦,张光德,陈熙明,浦铜良. 溶葡球菌酶在乳酸克鲁维酵母中重组表达、诱变、优化及酶学研究*[J]. 中国生物工程杂志, 2017, 37(12): 49-58.
[7] 饶菁菁, 景一娴, 邹明月, 胡小蕾, 廖飞, 杨晓兰. 季也蒙毕赤酵母菌尿酸酶基因的克隆、重组表达及表征[J]. 中国生物工程杂志, 2017, 37(11): 74-82.
[8] 曾杰. 优质L-天冬酰胺酶的开发与应用及重组表达研究进展[J]. 中国生物工程杂志, 2017, 37(11): 123-131.
[9] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[10] 李梦悦, 王腾飞, 汪俊卿, 赵一瑾, 程成, 王瑞明. 海藻糖合酶在毕赤酵母表面的展示[J]. 中国生物工程杂志, 2016, 36(2): 73-80.
[11] 丁一, 吴海英, 史吉平, 孙俊松. 氢化酶重组表达研究进展[J]. 中国生物工程杂志, 2015, 35(5): 109-118.
[12] 李翠琳, 张帆, 陈丹扬, 王昊, 郭强, 杜军. 人源TNFα的原核表达及活性测定[J]. 中国生物工程杂志, 2014, 34(8): 1-6.
[13] 杨波, 陈海琴, 宋元达, 张灏, 陈卫. 动物双歧杆菌肌球交叉反应抗原MCRA酶学功能的研究[J]. 中国生物工程杂志, 2012, 32(12): 30-36.
[14] 陈晓静, 陈小梅, 王洋, 施慧莉, 霍克克. 人SCYL1-BP1重组蛋白的原核表达及分离纯化鉴定[J]. 中国生物工程杂志, 2012, 32(09): 1-8.
[15] 高炳淼, 李宝珠, 吴勇, 林波, 朱晓鹏, 长孙东亭, 罗素兰. 重组芋螺毒素GeXIVAWT的表达、纯化和鉴定[J]. 中国生物工程杂志, 2012, 32(09): 34-40.