Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (10): 34-43    DOI: 10.13523/j.cb.20191005
研究报告     
一种来源于大菱鲆的热敏型尿嘧啶DNA糖苷酶的克隆表达及酶学性质鉴定 *
韩挺翰1,龚雪梅1,郦娟2,丁亚芳1,卢辰1,张坤晓1,高嵩1,许恒皓1,**()
1 淮海工学院江苏省海洋生物资源与环境重点实验室 江苏省海洋药物活性分子筛选重点实验室 江苏省海洋生物产业技术协同创新中心 连云港 222005
2 武汉食品化妆品检验所 武汉 430012
Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus
HAN Ting-han1,ONG Xue-mei1,ING Ya-fang2,U Chen1,ZHANG Kun-xiao1,AO song1,U Heng-hao1
1 Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine harmaceutical Compound Screening,Co?Innovation Center of Jiangsu Marine Bio-ndustry Technology,Huaihai Institute of Technology, Lianyungang 222005, China
2 Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China
 全文: PDF(987 KB)   HTML
摘要:

目的 尿嘧啶DNA糖苷酶UDGase是一种广泛应用于qPCR、二代测序等领域的工具酶,由于其应用特性,只有热敏性UDGase才具有较大开发利用潜力。目前全球热敏性UDGase工具酶仅有2个物种来源,均有专利保护且价格昂贵,亟待开发新来源且具有优良热敏特性的UDGase。方法 根据前人研究及序列分析推测大菱鲆(Scophthalmus maximus)具有热敏性UDGase。经验证,大菱鲆肝脏匀浆呈现UDGase活性。从大菱鲆肝脏匀浆克隆得到大菱鲆UDGase基因SmUDGase,并使用大肠杆菌工程菌株实现重组表达,分离纯化后进行活力表征检测。结果 序列比对结果表明,SmUDGase基因克隆成功。重组表达并经亲和层析、离子交换层析分离纯化,获得纯酶纯度约95%,产率1.51mg/L,比活力2 295.08U/mg。SmUDGase具有热敏性,在40℃时酶活即开始迅速降低。其他酶学性质,如pH适应范围、金属离子依赖性和对抑制剂的敏感性均与当前商业化UDGase一致。结论 成功克隆并鉴定来自大菱鲆的新来源SmUDGase,该酶具有热敏感性,酶学特性接近目前商业化UDGase。并探索该酶的重组表达和纯化工艺,所得纯酶基本达到商业化生产水平,为该类型生物工具酶的开发提供了理论参考和技术储备。

关键词: 尿嘧啶DNA糖苷酶大菱鲆热敏性重组表达    
Abstract:

Objective: Uracil-DNA glycosylase (UDGase) is a tool enzyme widely used in qPCR, NGS and other related fields. Because of its application characters, only heat-labile UDGase has good application potential. There are only 2 species origins of heat-labile UDGase as developed tool enzymes, which are patent protected and expensive. Therefore developing new species origins of heat-labile UDGase is of urgent need.Methods: Based on previous studies and sequence analysis, it is speculated that Scophthalmus maximus has a heat-labile UDGase. It was confirmed that the liver homogenate exhibited UDGase activity. The gene of UDGase of Scophthalmus maximus, SmUDGase, was cloned from the liver homogenate. Recombinant expression of SmUDGase was achieved in E.coli, and the enzyme was purified and characterized.Results: equence alignments showed that the cloning of SmUDGase was successful. Gone through recombinant expression, purification with affinity and ion-exchange chromatography, the purified enzyme achieved a purity of 95%, a productive rate of 1.51mg/L, and a specific activity of 2 295.08U/mg. SmUDGase was heat-labile with a rapid decrease of activity above 40℃. For other enzymatic properties, such as pH range, metal ion dependency and sensitivity to the inhibitor, SmUDGase was consistent with the current commercial UDGase.Conclusion: The study successfully cloned and characterized a new species origin SmUDGase from Scophthalmus maximus. SmUDGase was heat-labile with other enzymatic properties close to current commercial UDGase. Recombinant expression and purification methods of the enzyme also were explored. The purified enzyme has basically reached the commercial production standards. These provided theoretical reference and technical reserve for development of tool enzymes of this kind.

Key words: Uracil-DNA glycosylase    Scophthalmus maximus    Heat-labile    Recombinant expression
收稿日期: 2019-03-19 出版日期: 2019-11-12
ZTFLH:  Q814  
基金资助: * 湖北省自然科学基金(2017CFB366);苏省海洋药物活性分子筛选重点实验室开放基金(HY201702、HY201705)
通讯作者: 许恒皓     E-mail: xuhh@hhit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩挺翰
龚雪梅
郦娟
丁亚芳
卢辰
张坤晓
高嵩
许恒皓

引用本文:

韩挺翰,龚雪梅,郦娟,丁亚芳,卢辰,张坤晓,高嵩,许恒皓. 一种来源于大菱鲆的热敏型尿嘧啶DNA糖苷酶的克隆表达及酶学性质鉴定 *[J]. 中国生物工程杂志, 2019, 39(10): 34-43.

HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus. China Biotechnology, 2019, 39(10): 34-43.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191005        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I10/34

名称 序列
P1 5'-CACGCCATGTCGAAATTCTTAAGTGC-3'-DABCYL
P2 5'-TAMAR-GCACUUAAGGAAUUT-3'
P3 5'-GAAATTCTTAAGTGC-3'-DABCYL
P4 5'-TAMRA-GCACAAAAGAATTTC-3'
P5 5'-TAMRA-CGCTGCAGGACACATGGGGGAGCCGAGCAGCG-3'-DABCYL
SM-F 5'-ATGCCCGGGTGCTGTACTTGCCACAAACGAA-3'
SM-R 5'-TTAAAGTGTCTTCCAGTCTATGGGCGACTT-3'
ASM-F(Nhe I) 5'-GGCAGCCATATGGCTAGCATGCCGGGTGCTGTACTT-3'
ASM-R(Hind III) 5'-AGACTGGAAFACACTTTAAAAGCTTGCGGCCGCACTCC-3'
PSM-F(Nde I) 5'-GGTGCCGCGCGGCAGCCATATGCCGGGTGCGGTGCT-3'
PSM-R(Xho I) 5'-GGTGGTGGTGGGTGCTCGAGTTACAGGGTTTTCCAGT-3'
表1  引物列表
样品 反应5min时荧光值
大肠杆菌UDGase 293
大菱鲆肝脏匀浆1 41
大菱鲆肝脏匀浆2 67
大菱鲆肝脏匀浆3 53
阴性对照 10
表2  肝脏粗酶活表
图1  大菱鲆Uracil-DNA glycosylase的基因克隆
图2  SmUDGase的重组表达与纯化
步骤 体积(ml) 纯度(%) SmUDGase蛋白量
(mg/ml)
酶活(U) 比活力(U/mg) 得率(以酶活
计算)(%)
破碎上清 120 8 000 100
Co IMAC 16 75 0.25 7 200 1 787 90
Blue 16 95 0.19 6 942 2 295 86
成酶液 5.5 95 0.55 6 942 2 295 86
表3  纯化参数表格
图3  SmUDGase的酶活力及热敏性检测
图4  SmUDGase 的酶适应性表征
[1] Mary C L, Mark S B, James L , et al. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 1990,93:125-128.
[2] Bitinaite J, Nichols N M . DNA cloning and engineering by uracil excision. Curr Protoc Mol Biol, 2009,3(21):3-21.
[3] Bitinaite J, Rubino M, Varma K H , et al. USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res, 2007,35(6):1992-2002.
[4] 郑子君 . 脱氧尿嘧啶及尿嘧啶DNA糖基化酶抗PCR产物污染能力研究. 职业卫生与病伤, 2008,32(2):67-70.
Zheng Z J . Anti-contamination ability of dUTP/UDG system influorometric quantitative PCR, Journal of Occupational Health and Damage, 2008,32(2):67-70.
[5] Liu B, Yang X, Wang K , et al. Real-time monitoring of uracil removal by uracil-DNA glycosylase using fluorescent resonance energy transfer probes. Anal Biochem, 2007,366(2):237-243.
[6] 郭兆彪, 张敏丽, 汪晓辉 等. 用尿嘧啶糖基化酶预防PCR污染的研究. 中国兽医科技, 1999,3(29):12-14.
Guo Z B, Zhang M L, Wang X H , et al. Study on prevention of PCR contamination by uracil DNA glycosylase. Chinese Journal of Veterinary Science and Technology, 1999,3(29):12-14.
[7] Lindahl T . An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci USA, 1974,71(7):3649-3653.
[8] Lindahl T, Ljungquist S, Siegert W , et al. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem, 1977,252(10):3236-3294.
[9] Sandigursky M, Franklin W A . Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus. J Biol Chem, 2000,275(25):19146-19149.
[10] Fárez-Vidal M, Gallego C, Ruiz-Pérez L , et al. Characterization of uracil-DNA glycosylase activity from Trypanosoma cruzi and its stimulation by AP endonuclease. Nucleic Acids Research, 2001,28(7):1549-1555.
[11] Weiser B P, Rodriguez G, Cole P A , et al. N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA-dsDNA junctions. Nucleic Acids Res, 2018,46(14):7169-7178.
[12] Wu D, Chen L, Sun Q , et al. Uracil-DNA glycosylase is involved in DNA demethylation and required for embryonic development in the zebrafish embryo. J Biol Chem, 2014,289(22):15463-15473.
[13] Chung Y, Hsu W . The UL2 open reading frame of bovine herpesvirus 1 encodes a Uracil-DNA glycosylase. Microbiol Immunol, 1996,40(12):949-953.
[14] Lu C C, Huang H T, Wang J T , et al. Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. J Virol, 2007,81(3):1195-1208.
[15] Lee H W, Dominy B N, Cao W . New family of deamination repair enzymes in uracil-DNA glycosylase superfamily. J Biol Chem, 2011,286(36):31282-31287.
[16] Sobek H, Schmidt M, Frey B , et al. Heat-labile uracil-DNA glycosylase: purification and characterization. Federation of European Biochemical Societies, 1996,338:1-4.
[17] Lanes O, Guddal P, Gjellesvik D , et al. Purification and characterization of a cold-adapted uracil-DNA glycosylase from atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part B, 2000,127 : 399-410.
[18] Lanes Olav W N P, Guddal Per Henrik. Gjellesvik Dag Rune Cod uracil-DNA glycosylase,gene coding therefore,recombinant DNA containing said gene or operative parts thereof,a method for preparing said protein and the use of said protein or said operativie parts thereof in monitoring or controlling PCR.WO01/51623 A1, 2006-05-02.[2019-02-22] USA. .
[19] Outzen H B G, Smal?s A O, Willassen N P . Temperature and pH sensitivity of trypsins from atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp Biochem Physiol B Biochem Mol Biol, 1996,115(1):33-45.
[20] 刘斌 . 荧光分子探针技术在基因表达产物研究中的应用. 长沙:湖南大学, 2007.
Liu B . The application of novel fluorescent molecule pro technology on analysis of gene expression products. Changsha: Hunan University, 2007.
[21] 杨渐, 俞昌喜, 许盈 , 等. 钴金属螯合亲和层析在hIGF-1融合蛋白分离纯化中的应用. 药物生物技术, 2013,20(3):220-224.
Yang J, Yu C X, Xu Y , et al. Purification of hIGF-1 fusion protein by using cobalt metal chelate affinity chromatography. Pharmaceutical Biotechnology, 2013,20(3):220-224.
[22] 赵翀, 王玲, 谢蜀生 , 等. Cibacron Blue亲和层析及应用. 生物化学杂志, 1994,10(5):621-625.
Zhao C, Wang L, Xie S S,et al.Preparation of cibacron blue sephadex and its application on chromatography. Chinese Biochemical Journal, 1994,10(5):621-625.
[23] 韩富亮, 袁春龙, 郭安鹊 , 等. 二喹啉甲酸法(BCA)分析蛋白多肽的原理、影响因素和优点. 食品与发酵工业2014, 40(11):202-207.
Han F L, Yuan C L, Guo A Q , et al. The principle,influence factors and advantages of bicinchoninic acid method(BCA) for protein and peptide assay. Food and Fermentation Industries, 2014,40(11):202-207.
[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[3] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[4] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[5] 王曦,张光德,陈熙明,浦铜良. 溶葡球菌酶在乳酸克鲁维酵母中重组表达、诱变、优化及酶学研究*[J]. 中国生物工程杂志, 2017, 37(12): 49-58.
[6] 饶菁菁, 景一娴, 邹明月, 胡小蕾, 廖飞, 杨晓兰. 季也蒙毕赤酵母菌尿酸酶基因的克隆、重组表达及表征[J]. 中国生物工程杂志, 2017, 37(11): 74-82.
[7] 曾杰. 优质L-天冬酰胺酶的开发与应用及重组表达研究进展[J]. 中国生物工程杂志, 2017, 37(11): 123-131.
[8] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[9] 李梦悦, 王腾飞, 汪俊卿, 赵一瑾, 程成, 王瑞明. 海藻糖合酶在毕赤酵母表面的展示[J]. 中国生物工程杂志, 2016, 36(2): 73-80.
[10] 丁一, 吴海英, 史吉平, 孙俊松. 氢化酶重组表达研究进展[J]. 中国生物工程杂志, 2015, 35(5): 109-118.
[11] 杨波, 陈海琴, 宋元达, 张灏, 陈卫. 动物双歧杆菌肌球交叉反应抗原MCRA酶学功能的研究[J]. 中国生物工程杂志, 2012, 32(12): 30-36.
[12] 高炳淼, 李宝珠, 吴勇, 林波, 朱晓鹏, 长孙东亭, 罗素兰. 重组芋螺毒素GeXIVAWT的表达、纯化和鉴定[J]. 中国生物工程杂志, 2012, 32(09): 34-40.
[13] 周罡, 杨君, 杨青. 亚洲玉米螟的O-β-N-氨基乙酰葡萄糖基水解酶 (OfOGA)的基因克隆及重组表达[J]. 中国生物工程杂志, 2012, 32(05): 36-42.
[14] 魏海涛 张艳 范耀春 李传印 文喻玲 陈元鼎. A组轮状病毒NSP1基因克隆表达及免疫学性质研究[J]. 中国生物工程杂志, 2010, 30(03): 15-21.
[15] 陈元鼎 李传印 范耀春 文喻玲 张艳 魏海涛. A组轮状病毒NSP6蛋白表达及免疫学性质研究[J]. 中国生物工程杂志, 2009, 29(09): 0-0.