Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (9): 91-97    DOI: 10.13523/j.cb.20190912
综述     
混合表型急性白血病的细胞及分子遗传学研究进展
王谦,陈苏宁()
苏州大学附属第一医院 江苏省血液研究所 苏州 215006
The Genetics of Mixed-phenotype Acute Leukemia
WANG Qian,CHEN Su-ning()
The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou 215006, China
 全文: PDF(385 KB)   HTML
摘要:

混合表型急性白血病(mixed-phenotype acute leukemia, MPAL)是一类同时表达不止一个谱系特异性抗原的恶性克隆性疾病,发生率低,仅占急性白血病的2%~5%。多数MPAL患者可检测出克隆性染色体异常及分子遗传学改变,其中一些特异性异常如t(9;22)(q34;q11)及KMT2A重排在MPAL的诊断分型、靶向治疗及预后判断中具有重要的指导意义。近年来,随着全基因组测序、全外显子测序、靶向测序及单核苷酸多态性-微阵列比较基因组杂交等分子生物学技术的广泛应用,人们发现一些新的分子遗传学异常如ZNF384重排及WT1基因突变等也与疾病的发生发展及预后密切相关。这些发现进一步丰富了对MPAL发病机制的认识。现将有关MPAL细胞及分子遗传学的研究进展进行综述。

关键词: 混合表型急性白血病染色体易位基因突变    
Abstract:

Mixed-phenotype acute leukemia (MPAL) is a rare type of acute leukemia, in which the blasts express lineage specific antigens of more than 1 lineage. The incidence of MPAL comprises 2% to 5% of all cases of acute leukemia. Clonal chromosomal abnormalities can be detected in about 59% to 91% of MPAL patients, such as t(9;22)(q34;q11)/BCR-ABL1 and t(v;11q23)/KMT2A-rearrangment, which play a prominent role in the diagnosis and prognosis of these disorders. More recently, molecular approaches have been useful in further characterizing this group of diseases, such as whole genome sequencing, whole exome sequencing and next generation sequencing. ZNF384 fusions are common in B/My MPAL and WT1 mutations are common in T/My MPAL, which provide potential biological insights and may have clinical implications for this disease. This review aims to provide a brief overview of the recent advances in MPAL genetics.

Key words: Mixed-phenotype acute leukemia    Chromosomal translocation    Gene mutation
收稿日期: 2019-08-19 出版日期: 2019-09-20
ZTFLH:  Q343  
通讯作者: 陈苏宁     E-mail: chensuning@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王谦
陈苏宁

引用本文:

王谦,陈苏宁. 混合表型急性白血病的细胞及分子遗传学研究进展[J]. 中国生物工程杂志, 2019, 39(9): 91-97.

WANG Qian,CHEN Su-ning. The Genetics of Mixed-phenotype Acute Leukemia. China Biotechnology, 2019, 39(9): 91-97.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190912        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I9/91

Points B lineage T lineage Myeloid
2 CD79
cCD22
CD3
T cell receptor
Myeloperoxidase
1 CD19
CD10
CD20
CD2
CD5
CD8
CD10
CD13
CD33
CD65
CD117
0.5 TdT
CD24
TdT
CD1a
CD7
CD14
CD15a
CD64
表1  诊断BAL的EGIL评分系统
Lineage Marker
Myeloid lineage Myeloperoxidase
or
Monocytic differentiation (at least 2 of the following: non-specific esterase, CD11c, CD14, CD64, lysozyme)
B lineage Strong CD19 with at least 1 of the following strongly expressed: CD79a, cytoplasmic CD22, CD10
or
Weak CD19 with at least 2 of the following strongly expressed: CD79a, cytoplasmic CD22, CD10
T lineage Cytoplasmic CD3
or
Surface CD3
表2  2008/2016 WHO分类关于MPAL的系列和诊断标准
[1] Vardiman J W, Thiele J, Arber D A , et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood, 2009,114(5):937-951.
[2] Arber D A, Orazi A, Hasserjian R , et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016,127(20):2391-2405.
[3] Matutes E, Pickl W F, Van’t Veer M , et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood, 2011,117(11):3163-3171.
doi: 10.1182/blood-2010-10-314682
[4] Porwit A, Bene M C . Acute leukemias of ambiguous origin. Am J Clin Pathol, 2015,144(3):361-376.
[5] Munker R, Brazauskas R, Wang H L , et al. Allogeneic hematopoietic cell transplantation for patients with mixed phenotype acute leukemia. Biol Blood Marrow Transplant, 2016,22(6):1024-1029.
[6] Weinberg O K, Arber D A . Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia, 2010,24(11):1844-1851.
[7] Yan L, Ping N, Zhu M , et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica, 2012,97(11):1708-1712.
[8] van den Ancker W, Terwijn M, Westers T M , et al. Acute leukemias of ambiguous lineage: diagnostic consequences of the WHO2008 classification. Leukemia, 2010,24(7):1392-1396.
[9] Atfy M ,Al Azizi N M,Elnaggar A M. Incidence of Philadelphia-chromosome in acute myelogenous leukemia and biphenotypic acute leukemia patients: and its role in their outcome. Leuk Res, 2011,35(10):1339-1344.
[10] Bhatia P, Binota J, Varma N , et al. A study on the expression of BCR-ABL transcript in mixed phenotype acute leukemia (MPAL) cases using the reverse transcriptase polymerase reaction assay (RT-PCR) and its correlation with hematological remission status post Initial induction therapy. Mediterr J Hematol Infect Dis, 2012,4(1):e2012024.
[11] Gerr H, Zimmermann M, Schrappe M , et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J Haematol, 2010,149(1):84-92.
[12] Arana-Trejo R M, Ruiz Sanchez E, Ignacio-Ibarra G , et al. BCR/ABL p210, p190 and p230 fusion genes in 250 Mexican patients with chronic myeloid leukaemia (CML). Clin Lab Haematol, 2002,24(3):145-150.
[13] Moorman A V, Harrison C J, Buck G A , et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood, 2007,109(8):3189-3197.
[14] Kihara R, Nagata Y, Kiyoi H , et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia, 2014,28(8):1586-1595.
doi: 10.1038/leu.2014.55
[15] Ley T J, Miller C, Ding L , et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 2013,368(22):2059-2074.
[16] Soupir C P, Vergilio J A, Dal Cin P , et al. Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol, 2007,127(4):642-650.
[17] Wolach O, Stone R M . How I treat mixed-phenotype acute leukemia. Blood, 2015,125(16):2477-2485.
[18] Wang Y, Gu M, Mi Y , et al. Clinical characteristics and outcomes of mixed phenotype acute leukemia with Philadelphia chromosome positive and/or bcr-abl positive in adult. Int J Hematol, 2011,94(6):552-555.
doi: 10.1007/s12185-011-0953-1
[19] Al-Seraihy A S, Owaidah T M, Ayas M , et al. Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica, 2009,94(12):1682-1690.
[20] Owaidah T M, Al Beihany A, Iqbal M A , et al. Cytogenetics, molecular and ultrastructural characteristics of biphenotypic acute leukemia identified by the EGIL scoring system. Leukemia, 2006,20(4):620-626.
[21] Shimizu H, Saitoh T, Machida S , et al. Allogeneic hematopoietic stem cell transplantation for adult patients with mixed phenotype acute leukemia: results of a matched-pair analysis. Eur J Haematol, 2015,95(5):455-460.
[22] Zhang Y, Wu D, Sun A , et al. Clinical characteristics, biological profile, and outcome of biphenotypic acute leukemia: a case series. Acta Haematol, 2011,125(4):210-218.
[23] Heesch S, Neumann M, Schwartz S , et al. Acute leukemias of ambiguous lineage in adults: molecular and clinical characterization. Ann Hematol, 2013,92(6):747-758.
doi: 10.1007/s00277-013-1694-4
[24] De Braekeleer E, Meyer C, Douet-Guilbert N , et al. Identification of MLL partner genes in 27 patients with acute leukemia from a single cytogenetic laboratory. Mol Oncol, 2011,5(6):555-563.
doi: 10.1016/j.molonc.2011.08.003
[25] Li Z, Luo R T, Mi S , et al. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res, 2009,69(3):1109-1116.
[26] Wang Q F, Wu G, Mi S , et al. MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood, 2011,117(25):6895-6905.
doi: 10.1182/blood-2010-12-324699
[27] Balgobind B V, Raimondi S C, Harbott J , et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood, 2009,114(12):2489-2496.
[28] Tamai H, Yamaguchi H, Hamaguchi H , et al. Clinical features of adult acute leukemia with 11q23 abnormalities in Japan: a co-operative multicenter study. Int J Hematol, 2008,87(2):195-202.
doi: 10.1007/s12185-008-0034-2
[29] Manola K N . Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol, 2013,163(1):24-39.
[30] Rubnitz J E, Onciu M, Pounds S , et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood, 2009,113(21):5083-5089.
[31] Xu X Q, Wang J M, Lu S Q , et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica, 2009,94(7):919-927.
[32] Lou Z, Zhang C C, Tirado C A , et al. Infantile mixed phenotype acute leukemia (bilineal and biphenotypic) with t(10;11)(p12;q23);MLL-MLLT10. Leuk Res, 2010,34(8):1107-1109.
[33] Daigle S R, Olhava E J, Therkelsen C A , et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood, 2013,122(6):1017-1025.
doi: 10.1182/blood-2013-04-497644
[34] Dawson M A, Prinjha R K, Dittmann A , et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011,478(7370):529-533.
[35] Takahashi K, Wang F, Morita K , et al. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat Commun, 2018,9(1):2670.
[36] Alexander T B, Gu Z, Iacobucci I , et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 2018,562(7727):373-379.
[37] Quesada A E, Hu Z, Routbort M J , et al. Mixed phenotype acute leukemia contains heterogeneous genetic mutations by next-generation sequencing. Oncotarget, 2018,9(9):8441-8449.
[38] Eckstein O S, Wang L, Punia J N , et al. Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes. Exp Hematol, 2016,44(8):740-744.
[39] Noronha E P ,Marques L V C,Andrade F G , et al. T-lymphoid/myeloid mixed phenotype acute leukemia and early T-cell precursor lymphoblastic leukemia similarities with NOTCH1 mutation as a good prognostic factor. Cancer Manag Res, 2019,11:3933-3943.
[40] Hou H A, Kuo Y Y, Liu C Y , et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood, 2012,119(2):559-568.
doi: 10.1182/blood-2011-07-369934
[41] Xiao W, Bharadwaj M, Levine M , et al. PHF6 and DNMT3A mutations are enriched in distinct subgroups of mixed phenotype acute leukemia with T-lineage differentiation. Blood Adv, 2018,2(23):3526-3539.
[42] Alexander T B, Gu Z, Choi J K , et al. Genomic landscape of pediatric mixed phenotype acute leukemia. Blood, 2016,128:454.
[43] Neumann M, Vosberg S, Schlee C , et al. Mutational spectrum of adult T-ALL. Oncotarget, 2015,6(5):2754-2766.
[44] Van Vlierberghe P, Patel J, Abdel-Wahab O , et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia, 2011,25(1):130-134.
doi: 10.1038/leu.2010.247
[45] Wang Q, Qiu H, Jiang H , et al. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica, 2011,96(12):1808-1814.
doi: 10.3324/haematol.2011.043083
[46] Van Vlierberghe P, Palomero T, Khiabanian H , et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet, 2010,42(4):338-342.
[47] Sood R, Kamikubo Y , Liu P Role of RUNX1 in hematological malignancies. Blood, 2017,129(15):2070-2082.
[48] Ohgami R S, Ma L, Merker J D , et al. Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod Pathol, 2015,28(5):706-714.
[49] Zhang L, Padron E, Lancet J . The molecular basis and clinical significance of genetic mutations identified in myelodysplastic syndromes. Leuk Res, 2015,39(1):6-17.
[1] 李涛, 卢圣栋. 时空特异性基因打靶的应用及有关进展[J]. 中国生物工程杂志, 2002, 22(2): 56-60.
[2] 吴水清, 邹宗亮, 王升启. 利用基因芯片技术检测P53基因突变[J]. 中国生物工程杂志, 2000, 20(4): 40-43.
[3] 安海谦, 卢圣栋. DNA芯片技术及其应用[J]. 中国生物工程杂志, 1998, 18(2): 37-40.
[4] 田小利, 陈兰英. 转基因动物研究中存在问题[J]. 中国生物工程杂志, 1995, 15(5): 41-45.
[5] 陈竺. 早幼粒白血病相关基因的结构和功能研究[J]. 中国生物工程杂志, 1995, 15(3): 8-9.
[6] 申同健. 蛋白质工程中的基因突变方法学[J]. 中国生物工程杂志, 1987, 7(3): 11-19.
[7] 罗拥政. “人类的突变作用”[J]. 中国生物工程杂志, 1985, 5(3): 80-81.
[8] 罗明典. 获得控制细菌固氮的基因——固氮微生物学的重要成果[J]. 中国生物工程杂志, 1981, 1(4): 65-65.