Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (2): 101-111    DOI: 10.13523/j.cb.20190212
精准医疗与伴随诊断专刊     
二代基因测序数据管理和大数据平台在精准医学中的应用
武奥申,刘小娜,刘昀赫,刘刚,刘雷()
复旦大学生物医学研究院 上海 200032
Application of Second Generation Gene Sequencing Data Management and Big Data Platform in Precision Medicine
Ao-shen WU,Xiao-na LIU,Yun-he LIU,Gang LIU,Lei LIU()
Institute of Biological Sciences, Fudan University, Beijing 200032,China
 全文: PDF(1150 KB)   HTML
摘要:

精准医学集合了多种数据,包括组学、临床、环境和行为等,是对疾病进行个性化治疗、预防和管理的科学。随着基因测序费用的大幅下降,人们对肿瘤等疾病的认识从传统病理到分子水平的飞跃等,相关科学的发展和普及推动了精准医学的诞生和发展,将更加深远地影响着人类的健康。本文介绍了精准医学的概念、目的及应用,介绍了二代DNA测序技术在精准医学中的应用,认为基因组学数据、样本管理、数据质量控制标准以及数据管理平台等是实现精准医学的基础,智能化精准医疗将是来的发展方向。进行展望的同时,也认为基因组学海量数据的规模特点、各种健康应用在推动数据管理平台的发展的同时,也对其演进提出了挑战。

关键词: 精准医学组学数据临床数据数据安全人工智能    
Abstract:

Precision medicine integrates multiple types of data, including -omics, clinical, environmental and behavioral data to facilitate the personalized therapy, prevention and management. The cost reduction of gene/genome sequencing, the understanding of cancers from pathology to molecular level, and improvement of some subjects and technologies promoted the formation and development of precision medicine. The precision medicine will have a huge impact on human health. In this article, concept, purpose and application of precision was introduced, and application of next-generation DNA sequencing in precision medicine was also presented. The foundation of the precision medicine is genomic data, sample management of samples, and data quality control. Artificial intelligence is the future of precision medicine. Meanwhile, the characteristics of genomic data and the management of various health-related data are also a huge challenge for precision medicine.

Key words: Precision medicine    Omics data    Clinical data    Data security    Artificial intelligence
收稿日期: 2019-01-10 出版日期: 2019-03-26
ZTFLH:  Q819  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武奥申
刘小娜
刘昀赫
刘刚
刘雷

引用本文:

武奥申,刘小娜,刘昀赫,刘刚,刘雷. 二代基因测序数据管理和大数据平台在精准医学中的应用[J]. 中国生物工程杂志, 2019, 39(2): 101-111.

Ao-shen WU,Xiao-na LIU,Yun-he LIU,Gang LIU,Lei LIU. Application of Second Generation Gene Sequencing Data Management and Big Data Platform in Precision Medicine. China Biotechnology, 2019, 39(2): 101-111.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190212        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I2/101

图1  二代测序技术的发展
图2  生物网络大数据平台
图3  从生物网络到精准医学知识库技术路线
图4  神经胶质瘤分级深度学习框架[34]
[1] National Research Council ( US). Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington (DC): National Academies Press. 2011.
[2] Collins F S, Varmus H . A new initiative on precision medicine. The New England Journal of Medicine, 2015,372(9):793-795.
doi: 10.1056/NEJMp1500523 pmid: 25635347
[3] 杨湘玲, 朱健生, 刘贤云 , 等. 新型无创DNA产前检测在诊断胎儿染色体非整倍体疾病中的应用. 中国产前诊断杂志(电子版), 2013,5(2):15-17.
Yang X L, Zhu J S, LIU X Y , et al. Impication of noninvasive DNA prenatal diagnosis of chromasomal aneuploidy. Chinese Journal of Prenatal Diagnosis (electronic version), 2013,5(2):15-17.
[4] Fonda A F, Stoll K, Bernhardt B A . Pre-and post-test genetic counseling for chromosomal and Mendelian disorders. Seminars in Perinatology, 2016,40(1):44-55.
doi: 10.1053/j.semperi.2015.11.007 pmid: 26718445
[5] Willig L K, Petrikin J E, Smith L D , et al, Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. The Lancet, 2015,3(5):377-387.
doi: 10.1016/S2213-2600(15)00139-3 pmid: 25937001
[6] Yang Y P, Muzny D M, Reid J G , et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med, 2013,369(16):1502-1511.
doi: 10.1056/NEJMoa1306555
[7] 吴一龙 . 精准癌医学: 走向未来的路. 循证医学, 2015,15(1):1-2.
doi: 10.3969/j.issn.1671-5144.2015.01.001
Wu Y L . Precision cancer medicine: A way to the future. Journal of Evidence-Based Medicine, 2015,15(1):1-2.
doi: 10.3969/j.issn.1671-5144.2015.01.001
[8] Tang L D, Xu W R . Challenges and opportunities for pharmaceutical industry in the era of precision medicion. Drugs&Clinic, 2015,4:351-354
[9] Roychowdhury S, Matthew K, Robinson D R , et al, Personalized oncology through integrative high-throughput sequencing: a pilot study. Science Translational Medicine, 2011, 3(111): 111ra121-111ra121.
[10] 李艳明, 杨亚东, 张昭军 , 等. 精准医学大数据的分析与共享. 中国医学前沿杂志(电子版), 2015,7(6):4-10.
doi: 10.3969/j.issn.1674-7372.2015.06.002
Li Y M, Yang Y D, Zhang Z J , et al. The share and analyses of big data for precision medicine. Chinese Journal of the Frontiers of Medical Science, 2015,7(6):4-10.
doi: 10.3969/j.issn.1674-7372.2015.06.002
[11] 徐武夷, 杨文 . 乳腺癌治疗进展. 转化医学杂志, 2011,24(1):29-33.
Xu W Y, Yang W . Progression of breast cancer therapy. Journal of Naval General Hospital, 2011,24(1):29-33.
[12] Alizadeh A A, Eisen M B, Davis R E , et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000,403(6769):503-511.
doi: 10.1038/35000501
[13] Begley C G, Ellis L M . Drug development: Raise standards for preclinical cancer research. Nature, 2012,483(7391):531-533.
doi: 10.1038/483531a
[14] Shen S, Qu Y C, Zhang J . The application of next generation sequencing on epigenetic study. Hereditas, 2014,36(3):256-275.
doi: 10.3724/SP.J.1005.2014.0256 pmid: 24846966
[15] Zhang Y, Ng H H, Erdjument-Bromage H , et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 1999,13(15):1924-1935.
doi: 10.1101/gad.13.15.1924 pmid: 10444591
[16] Widschwendter M, Fiegl Heidi, Egle D , et al. Epigenetic stem cell signature in cancer. Nature Genetics, 2007,39(2):157-158.
doi: 10.1038/ng1941 pmid: 17200673
[17] 许力凡, 张记, 田志强 , 等. 表观遗传学与肿瘤干细胞. 遗传, 2013,35(9):1049-1057.
doi: 10.3724/SP.J.1005.2013.01049
Xu L F, Zhang J, Tian Z Q , et al. Epigenetics in cancer stem cell. Hereditas, 2013,35(9):1049-1057.
doi: 10.3724/SP.J.1005.2013.01049
[18] Luo J, Jin F . Recent advances in understanding the impact of intestinal microbiota on host behavior. Chinese Science Bulletin, 2014,59(22):2169-2190.
doi: 10.1360/N972014-00120
[19] 盛华芳, 周宏伟 . 微生物组学大数据分析方法、挑战与机遇. 南方医科大学学报, 2015,35(7):931-934.
doi: 10.3969/j.issn.1673-4254.2015.07.01
Sheng H F, Zhou H W . Methods, challenge and opportunities for big data analyses of microbiome. Journal Southern Medical University, 2015,35(7):931-934.
doi: 10.3969/j.issn.1673-4254.2015.07.01
[20] 支沛轩 , 浅述肿瘤精准医疗的研究进展. 中国实用医药, 2016,11(4):287-288.
doi: 10.14163/j.cnki.11-5547/r.2016.04.216
Zhi P X . Brief review of progression of cancer precision medicine. China Practical Medicine, 2016,11(4):287-288.
doi: 10.14163/j.cnki.11-5547/r.2016.04.216
[21] 郑广勇, 杨桢, 曹瑞芳 , 等. 宏基因组大数据分析的质量控制流程规范. 大数据, 2018,4(3):3-12.
Zheng G Y, Yang Z, Cao R F , et al. Quality control of big data analysis for metagenomics. Big Data Research, 2018,4(3):3-12.
[22] 焦怡琳, 王吉春, 张群 , 等. 中国在精准医学领域面临的机遇与挑战. 中国公共卫生管理, 2015,31(5):601-603.
Jiao Y L, Wang J C, Zhang Q , et al. Opportunities and challenges of China precision medicine. Chinese Journal of Public Health Management, 2015,31(5):601-603.
[23] 郑洁, 李维 . 精准医学的再思考. 医学信息学杂志, 2016,37(1):8-12.
doi: 10.3969/j.issn.1673-6036.2016.01.002
Zheng J, Li W . Rethinking of precision medicine. Journal of Medical Informatics, 2016,37(1):8-12.
doi: 10.3969/j.issn.1673-6036.2016.01.002
[24] 吴家睿 . 建立在系统生物学基础上的精准医学. 生命科学, 2015,27(5):558-563.
Wu J R . Precision medicine on system biology. Chinese Bulletin of Life Sciences, 2015,27(5):558-563.
[25] 肖飞 . 从循证医学到精准医学的思考. 中华肾病研究电子杂志, 2014,3(3):123-128.
doi: 10.3877/cma.j.issn.2095-3216.2014.03.002
Xiao F . A paradigm shift from evidence-based medicine to precision medicine. Chinese Journal of Kidney Disease Invesigation, 2014,3(3):123-128.
doi: 10.3877/cma.j.issn.2095-3216.2014.03.002
[26] Dong X, Berti-Equille L, Srivastava D . Truth discovery and copying detection in a dynamic world. Proceedings of the VLDB Endowment, 2009,2(1):562-573.
doi: 10.14778/1687627.1687691
[27] Luxton D D . Recommendations for the ethical use and design of artificial intelligent care providers. Artif Intell Med, 2014,62(1):1-10.
doi: 10.1016/j.artmed.2014.06.004 pmid: 25059820
[28] Bartgis J, Albright G . Online role-play simulations with emotionally responsive avatars for the early detection of Native youth psychological distress, including depression and suicidal ideation. Am Indian Alsk Native Ment Health Res, 2016,23(2):1-27.
doi: 10.5820/aian.2302.2016.1 pmid: 27115130
[29] Pouke M, Hakkila J . Elderly healthcare monitoring using an avatar-based 3D virtual environment. Int J Environ Res Public Health, 2013,10(12):7283-7298.
doi: 10.3390/ijerph10127283 pmid: 3881167
[30] Esteva A, Kuprel Brett, Novoa R A , et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017,542(7639):115-118.
doi: 10.1038/nature21056 pmid: 28117445
[31] Gulshan V, Peng L, Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016,316(22):2402-2410.
doi: 10.1001/jama.2016.17216 pmid: 27898976
[32] Edge S B, Compton C C . The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol, 2010,17(6):1471-1474.
doi: 10.1245/s10434-010-0985-4
[33] Fanshawe T R, Lynch A G, Ellis I O , et al. Assessing agreement between multiple raters with missing rating information, applied to breast cancer tumour grading. PLoS One, 2008,3(8):e2925.
doi: 10.1371/journal.pone.0002925 pmid: 18698346
[34] Ertosun M G, Rubin D L . Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. AMIA Annu Symp Proc, 2015: 1899-1908.
pmid: 26958289
[35] Cornet G. Robot companions and ethics a pragmatic approach of ethical design. J Int Bioethique, 2013, 24(4): 49- 58, 179-180.
[36] Larson J A, Johnson M H, Bhayani S B . Application of surgical safety standards to robotic surgery: five principles of ethics for nonmaleficence. J Am Coll Surg, 2014,218(2):290-293.
doi: 10.1016/j.jamcollsurg.2013.11.006 pmid: 24315652
[37] Somashekhar S P, Sepúlveda M J, Puglielli S , et al. Watson for oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol, 2018,29(2):418-423.
doi: 10.1093/annonc/mdx781 pmid: 29324970
[38] Alanazi H O, Abdullah A H, Qureshi K N . A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. Journal of Medical Systems, 2017,41(4):1-10.
doi: 10.1007/s10916-016-0650-y
[39] Crosby J, Peloso G M, Auer P L , et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med, 2014,371(1):22-31.
doi: 10.1056/NEJMoa1307095 pmid: 4180269
[40] Dewey F E, Gusarova V , O’Dushlaine C,et al. Inactivating variants in angptl4 and risk of coronary artery disease. N Engl J Med, 2016,374(12):1123-1133.
doi: 10.1056/NEJMoa1510926
[41] Cohen J, Pertsemlidis A , et al.Kotowski I K. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet, 2005,37(2):161-165.
doi: 10.1038/ng1509 pmid: 15654334
[42] Abifadel M, Varret M, Rabès J P , et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet, 2003,34(2):154-156.
doi: 10.1038/ng1161 pmid: 12730697
[43] Seidah N G . The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Glob Cardiol Sci Pract, 2017,1:e201702.
doi: 10.21542/gcsp.2017.2 pmid: 5621713
[44] Nioi P, Sigurdsson A, Thorleifsson G , et al., Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med, 2016,374(22):2131-2141.
doi: 10.1056/NEJMoa1508419 pmid: 27192541
[45] Tybjaerg-Hansen A . The sialylation pathway and coronary artery disease. N Engl J Med, 2016,374(22):2169-2171.
doi: 10.1056/NEJMe1604773 pmid: 27192165
[46] Lamb J, Crawford E D, Peck D , et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006,313(5795):1929-1935.
doi: 10.1126/science.1132939 pmid: 17008526
[47] Kuchenbaecker K B, Hopper J L, Barnes D R , et al. Risks of breast, ovarian, and contralateral breast cancer for brca1 and brca2 mutation carriers. JAMA, 2017,317(23):2402-2416.
doi: 10.1001/jama.2017.7112 pmid: 28632866
[48] Paz-Ares L, Tan E H , O’Byrne K,et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol, 2017,28(2):270-277.
doi: 10.1093/annonc/mdw611 pmid: 5391700
[49] Tsao M S, Aviel-Ronen S, Ding K , et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol, 2007,25(33):5240-5247.
doi: 10.1200/JCO.2007.12.6953
[50] Solomon B J, Mok T, Kim D W , et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med, 2014,371(23):2167-2177.
doi: 10.1056/NEJMoa1408440
[1] 彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.
[2] 谢志勇,周翔. 基于机器学习的医学影像分析在药物研发和精准医疗方面的应用[J]. 中国生物工程杂志, 2019, 39(2): 90-100.
[3] 汪凌,陈新. 肿瘤精准医学知识数据库的设计与构建[J]. 中国生物工程杂志, 2018, 38(5): 40-46.