Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (2): 62-73    DOI: 10.13523/j.cb.20190208
精准医疗与伴随诊断专刊     
肿瘤精准免疫诊断综合评估
杨琳,李勇超,张腾华,邓乙晓,杨锦,高志博()
深圳裕策生物科技有限公司 深圳 518081
Comprehensive Evaluation is needed for Precision Diagnosis in Cancer Immunotherapies
Lin YANG,Yong-chao LI,Teng-hua ZHANG,Yi-xiao DENG,Jin YANG,Zhi-bo GAO()
Yuce Biotechnology Co.,Ltd,Shenzhen 518081,China
 全文: PDF(1095 KB)   HTML
摘要:

近年来,肿瘤免疫治疗(cancer immunotherapies)已成为晚期恶性肿瘤治疗的重要手段之一。肿瘤免疫治疗并不直接攻击癌细胞,而是通过调节人体自身免疫系统来抗击肿瘤,有望像抗生素改变抗感染治疗一样改变肿瘤治疗范式。抗PD-1/L1和抗CTLA-4抗体药物作为肿瘤免疫治疗的代表药物,使晚期癌症患者五年生存率达成了数倍的提升,被认为是真正有希望治愈癌症的治疗方式。然而,肿瘤免疫治疗只对部分患者有效,并且存在耐药、超进展、不良反应等问题。如何准确筛选出最有可能从治疗中获益的人群成为肿瘤免疫治疗研究中的一个重大挑战。目前有多个与免疫治疗相关的生物标志物正在研究中,并且有望被用于临床筛选治疗获益人群;但这些生物标记物也存在很多缺陷。未来,围绕免疫治疗敏感性和副反应的多项指标综合评估可能成为一个趋势。

关键词: 肿瘤免疫治疗精准诊断免疫综合评估    
Abstract:

Cancer immunotherapies has become one of the important approaches in advanced malignant tumor treatments. The immunotherapies attack tumors by reinvigorating the human immune system, which will change the paradigm of cancer treatment. The immunotherapies, including anti-PD-1/L1 and anti-CTLA-4 antibodies, have improved the five-year survival rate of patients with malignant tumors, and have been recognized as the most promising treatments to cure cancer. However, only a subset of patients benefits from the immunotherapy, and there are problems such as drug resistance, hyperprogression disease, and immune-related adverse events. Thus, the early selection of the most sensitive patients is key, and the development of predictive biomarkers is one of the biggest challenges of cancer immunotherapy development. Many biomarkers are under investigation, and they are potentially applicable to the clinical selection of patients for immunotherapies, but each has limited utility. Comprehensive evaluation of multiple indicators around the sensitivity and the adverse events of immunotherapies will be the direction of the future. In this article, we will review the research progress in cancer immunotherapies and comprehensive evaluation of precision cancer diagnosis.

Key words: Cancer immunotherapy    Precision diagnosis    Comprehensive evaluation
收稿日期: 2019-01-10 出版日期: 2019-03-26
ZTFLH:  Q819  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨琳
李勇超
张腾华
邓乙晓
杨锦
高志博

引用本文:

杨琳,李勇超,张腾华,邓乙晓,杨锦,高志博. 肿瘤精准免疫诊断综合评估[J]. 中国生物工程杂志, 2019, 39(2): 62-73.

Lin YANG,Yong-chao LI,Teng-hua ZHANG,Yi-xiao DENG,Jin YANG,Zhi-bo GAO. Comprehensive Evaluation is needed for Precision Diagnosis in Cancer Immunotherapies. China Biotechnology, 2019, 39(2): 62-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190208        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I2/62

药企 药物名 商品名 靶点 获批适应
症数量
FDA批准适应症 NMPA
批准适应症
百时美
施贵宝
伊匹木单抗
IPILIMUMAB
YERVOY CTLA-4 2 黑色素瘤、肾细胞癌
百时美
施贵宝
纳武利尤单抗
NIVOLUMAB
欧狄沃
OPDIVO
PD-1 9 恶性黑色素瘤、非小细胞肺癌、肾细胞癌、经典型霍奇金淋巴癌、头颈部鳞癌、尿路上皮癌、MSI-H/DMMR转移性结直肠癌、肝细胞癌、小细胞肺癌 非小细
胞肺癌
默沙东 帕博利珠单抗
PEMBROLIZUMAB
可瑞达
KEYTRUDA
PD-1 11 黑色素瘤、非小细胞肺癌、头颈部鳞癌、经典型霍奇金淋巴癌、尿路上皮癌,MSI-H/DMMR实体瘤、胃癌/胃食管结合部腺癌、宫颈癌、纵隔大B细胞淋巴瘤、肝细胞癌、默克尔细胞癌 黑色素瘤
赛诺菲&
再生元
CEMIPLIMAB-
RWLC
LIBTAYO PD-1 1 皮肤鳞状细胞癌
罗氏 ATEZOLIZUMAB TECENTRIQ PD-L1 2 尿路上皮癌、非小细胞肺癌
默克&辉瑞 AVELUMAB BAVENCIO PD-L1 2 转移性默克尔细胞癌、尿路上皮癌
阿斯利康 DURVALUMAB IMFINZI PD-L1 2 尿路上皮癌、非小细胞肺癌
君实生物 特瑞普利单抗 拓益 PD-1 1 黑色素瘤
信达生物 信迪利单抗 达伯舒 PD-1 1 霍奇金淋巴瘤
表1  已获批的免疫检查点抑制剂药物
图1  液体活检指导免疫治疗的潜在生物标志物
图2  肿瘤免疫循环[61]
图3  个体化肿瘤免疫综合评价模型框架
[1] 高志博, 杨锦 . 肿瘤精准免疫治疗与基因检测. 生物产业技术, 2017,58(02):27-33.
doi: 10.3969/j.issn.1674-0319.2017.02.004
Gao Z B, Yang J . Genetic testing for precision cancer immunotherapy. Biotechnology & Business, 2017,58(02):27-33.
doi: 10.3969/j.issn.1674-0319.2017.02.004
[2] Sharma P, Hu-Lieskovan S, Wargo J A , et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017,168(4):707-723.
doi: 10.1016/j.cell.2017.01.017 pmid: 28187290
[3] Topalian S L, Hodi F S, Brahmer J R , et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 2012,366(26):2443-2454.
doi: 10.1056/NEJMoa1200690
[4] Robert C, Long G V, Brady B , et al. Nivolumab in previously untreated melanoma without braf mutation. New England Journal of Medicine, 2015,372(4):320-330.
doi: 10.1056/NEJMoa1412082
[5] Robert C, Schachter J, Long G V , et al. Pembrolizumab versus Ipilimumab in advanced melanoma. New England Journal of Medicine, 2015,372(26):2521-2532.
doi: 10.1056/NEJMoa1503093 pmid: 25891173
[6] Gettinger S N, Horn L, Gandhi L , et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. Journal of Clinical Oncology, 2015,33(18):2004-2012.
doi: 10.1200/JCO.2014.58.3708
[7] Rizvi N A, Mazières Julien, Planchard D , et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. The Lancet Oncology, 2015,16(3):257-265.
doi: 10.1016/S1470-2045(15)70054-9
[8] Garon E B, Rizvi N A, Hui R , et al. Pembrolizumab for the treatment of non-small-cell lung cancer. New England Journal of Medicine, 2015,372(21):2018-2028.
doi: 10.1056/NEJMoa1501824 pmid: 25891174
[9] Borghaei H, Paz-Ares L, Horn L , et al. Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. New England Journal of Medicine, 2015,373(17):1627-1639.
doi: 10.1056/NEJMoa1507643 pmid: 4681400
[10] Brahmer J, Reckamp K L, Baas P , et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. New England Journal of Medicine, 2015,373(2):123-135.
doi: 10.1056/NEJMoa1507643 pmid: 4681400
[11] Daud A I, Wolchok J D, Robert C , et al. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. Journal of Clinical Oncology, 2016,34(34):4102-4109.
doi: 10.1200/JCO.2016.67.2477 pmid: 27863197
[12] Reck M, Rodríguez-Abreu D, Robinson A G , et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. New England Journal of Medicine, 2015,375(19):1823-1833.
doi: 10.1056/NEJMoa1606774 pmid: 27718847
[13] Hansen A R, Siu L L . PD-L1 testing in cancer: challenges in companion diagnostic development. Jama Oncology, 2016,2(1):15-16.
doi: 10.1001/jamaoncol.2015.4685
[14] Sacher A G, Gandhi L . Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer. JAMA Oncology, 2016,2(9):1217-1222.
doi: 10.1001/jamaoncol.2016.0639 pmid: 27310809
[15] Mandal R, Chan T A . Personalized oncology meets immunology: the path toward precision immunotherapy. Cancer Discovery, 2016,6(7):703-713.
doi: 10.1158/2159-8290.CD-16-0146 pmid: 27107038
[16] Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014,511(7511):543-550.
doi: 10.1038/nature13385
[17] Shukuya T, Carbone D P . Predictive markers for the efficacy of anti-PD-1/PD-L1 antibodies in lung cancer. Journal of Thoracic Oncology, 2016,11(7):976-988.
doi: 10.1016/j.jtho.2016.02.015 pmid: 26944305
[18] Schumacher T N, Schreiber R D . Neoantigens in cancer immunotherapy. Science, 2015,348(6230):69-74.
doi: 10.1126/science.aaa4971
[19] Snyder A, Makarov V, Merghoub T , et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. New England Journal of Medicine, 2014,371(23):2189-2199.
doi: 10.1056/NEJMc1415938 pmid: 4315319
[20] Van Allen E M, Miao D, Schilling B , et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015,350(6257):207-211.
doi: 10.1126/science.aad0095
[21] Rizvi N A, Hellmann M D, Snyder A , et al. Cancer immunology. mutational landscape determines sensitivity to PD-1 blockade in nonsmall cell lung cancer. Science, 2015,348(6230):124-128.
doi: 10.1126/science.aaa1348 pmid: 25765070
[22] Rosenberg J E, Hoffman-Censits J, Powles T , et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 2016,387(10031):1909-1920.
doi: 10.1016/S0140-6736(16)00561-4 pmid: 26952546
[23] McGranahan N, Furness A J, Rosenthal R , et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 2016,351(6280):1463-1469.
doi: 10.1126/science.aaf1490
[24] Le D T, Uram J N, Wang H , et al. PD-1 blockade in tumors with mismatch-repair deficiency. New England Journal of Medicine, 2015,372(26):2509-2520.
doi: 10.1056/NEJMoa1500596
[25] Brahmer J R, Drake C G, Wollner I , et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of Clinical Oncology, 2010,28(19):3167-3175.
doi: 10.1200/JCO.2009.26.7609
[26] Remon J, Chaput N, Planchard D . Predictive biomarkers for programmed death-1/programmed death ligand immune checkpoint inhibitors in nonsmall cell lung cancer. Current Opinion in Oncology, 2016,28(2):122-129.
doi: 10.1097/CCO.0000000000000263 pmid: 26756384
[27] Tumeh P C, Harview C L, Yearley J H , et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014,515(7528):568-571.
doi: 10.1038/nature13954 pmid: 25428505
[28] Herbst R S, Soria J C, Kowanetz M , et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014,515(7528):563-567.
doi: 10.1038/nature14011
[29] Daud A I, Loo K, Pauli M L , et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. Journal of Clinical Investigation, 2016,126(9):3447-3452.
doi: 10.1172/JCI87324 pmid: 5004965
[30] Nghiem P, Bhatia S, Daud A , et al. 22LBA Activity of PD-1 blockade with pembrolizumab as first systemic therapy in patients with advanced Merkel cell carcinoma. European Journal of Cancer, 2015,51:S720-S721.
[31] Elkhoueiry A B, Melero I, Crocenzi T S , et al. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma ( HCC): CA209-040. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 2015, 33(18_suppl): LBA101.
doi: 10.1200/jco.2015.33.18_suppl.lba101 pmid: 28147715
[32] Martens A, Wistubahamprecht K, Eigentler T K , et al. Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clinical Cancer Research, 2016,22(12):2908-2918.
doi: 10.15496/publikation-14544 pmid: 26787752
[33] Delyon J, Mateus C, Lefeuvre D , et al. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: an early increase in lymphocyte and eosinophil counts is associated with improved survival. Annals of Oncology, 2013,24(6):1697-1703.
doi: 10.1093/annonc/mdt027 pmid: 23439861
[34] Kelderman S , Heemskerk B, van Tinteren H, et al. Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunology, Immunotherapy, 2014,63(5):449-458.
[35] Gebhardt C, Sevko A, Jiang H , et al. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clinical Cancer Research, 2015,21(24):5453-5459.
doi: 10.1158/1078-0432.CCR-15-0676
[36] Tietze J K, Angelova D, Heppt M V , et al. The proportion of circulating CD45RO+CD8+ memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. European Journal of Cancer, 2017,75:268-279.
doi: 10.1016/j.ejca.2016.12.031 pmid: 28242504
[37] Diem S, Kasenda B, Spain L , et al. Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. British Journal of Cancer, 2016,114(3):256-261.
doi: 10.1038/bjc.2015.467 pmid: 47425881
[38] Weide B, Martens A, Hassel J C , et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clinical Cancer Research, 2016,22(22):5487-5496.
doi: 10.1158/1078-0432.CCR-16-0127 pmid: 27185375
[39] Ayers M, Lunceford J, Nebozhyn M , et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. The Journal of Clinical Investigation, 2017,127(8):2930-2940.
doi: 10.1172/JCI91190
[40] Cristescu R, Mogg R, Ayers M , et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science, 2018, 362(6411): eaar3593.
[41] Ott P A, Bang Y J , Piha-Paul S A, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. Journal of clinical oncology. 2019,37(4):318-327.
[42] Chowell D , Morris L G T, Grigg C M, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 2018,359(6375):582-587.
doi: 10.1126/science.aao4572 pmid: 29217585
[43] McGranahan N, Rosenthal R, Hiley C T , et al. Allele-specific hla loss and immune escape in lung cancer evolution. Cell, 2017,171(6):1259-1271.
doi: 10.1016/j.cell.2017.10.001 pmid: 29107330
[44] Marie Vétizou, Pitt J M, Romain Daillère , et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015,350(6264):1079-1084.
doi: 10.1126/science.aad1329 pmid: 26541610
[45] Sivan A, Corrales L, Hubert N , et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015,350(6264):1084-1089.
doi: 10.1126/science.aac4255
[46] Dubin K, Callahan M K, Ren B , et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nature Communications, 2016,7:10391.
doi: 10.1038/ncomms10391 pmid: 26837003
[47] Champiat S, Dercle L, Ammari S , et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clinical Cancer Research, 2017,23(8):1920-1928.
doi: 10.1158/1078-0432.CCR-16-1741 pmid: 27827313
[48] Kato S, Goodman A M, Walavalkar V , et al. Hyper-progressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clinical Cancer Research, 2017,23(15):4242-4250.
doi: 10.1158/1078-0432.CCR-16-3133 pmid: 28351930
[49] Larkin J, Chiarion-Sileni V, Gonzalez R , et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England Journal of Medicine, 2015,373(1):23-34.
doi: 10.1056/NEJMoa1504030 pmid: 26027431
[50] Wolchok J D, Kluger H, Callahan M K , et al. Nivolumab plus ipilimumab in advanced melanoma. New England Journal of Medicine, 2013,369(2):122-133.
doi: 10.1056/NEJMoa1302369 pmid: 23724867
[51] Hellmann M D, Callahan M K, Awad M M, et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell, 2018, 33(5): 853-861. e4.
doi: 10.1016/j.ccell.2018.04.001 pmid: 29731394
[52] Khagi Y, Goodman A M, Daniels G A , et al. Hypermutated circulating tumor dna: correlation with response to checkpoint inhibitor-based immunotherapy. Clin Cancer Res, 2017,23:5729-5736.
doi: 10.1158/1078-0432.CCR-17-1439 pmid: 28972084
[53] Gandara D R, Paul S M, Kowanetz M , et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nature Medicine, 2018,24(9):1441-1448.
doi: 10.1038/s41591-018-0134-3
[54] Chen G, Huang A C, Zhang W , et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 2018,560(7718):382-386.
doi: 10.1038/s41586-018-0392-8
[55] Krieg C, Nowicka M, Guglietta S , et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nature Medicine, 2018,24(2):144-153.
doi: 10.1038/nm.4466 pmid: 29309059
[56] Sanmamed M, Perez-Gracia J, Schalper K , et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small cell lung cancer patients. Annals of Oncology, 2017,28(8):1988-1995.
doi: 10.1093/annonc/mdx190 pmid: 28595336
[57] Siravegna G, Marsoni S, Siena S , et al. Integrating liquid biopsies into the management of cancer. Nature Reviews Clinical Oncology, 2017,14(9):531-548.
doi: 10.1038/nrclinonc.2017.14
[58] Lee J H, Long G V, Menzies A M , et al. Association between circulating tumor dna and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncology, 2018,4(5):717-721.
doi: 10.1001/jamaoncol.2017.5332
[59] Tang J, Yu J X , Hubbard-Lucey V M, et al. Trial watch: the clinical trial landscape for PD1/ PDL1 immune checkpoint inhibitors. Nature Reviews Drug Discovery, 2018,17(12):854-855.
doi: 10.1038/nrd.2018.210
[60] Sanmamed M F, Chen L . A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell, 2018,175(2):313-326.
doi: 10.1016/j.cell.2018.09.035
[61] Chen D S, Mellman I . Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013,39(1):1-10.
doi: 10.1016/j.immuni.2013.07.012
[62] Socinski M A, Jotte R M, Federico C , et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. New England Journal of Medicine, 2018,378(24):2288-2301.
doi: 10.1056/nejmoa1716948 pmid: 29863955
[63] Blank C U, Haanen J B, Ribas A , et al. The “cancer immunogram”. Science, 2016,352(6286):658-660.
doi: 10.1126/science.aaf2834
[64] Karasaki T, Nagayama K, Kuwano H , et al. An Immunogram for the cancer-immunity cycle: towards personalized immunotherapy of lung cancer. Journal of Thoracic Oncology, 2017,12(5):791-803.
doi: 10.1016/j.jtho.2017.01.005 pmid: 28088513
[1] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[2] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[3] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[4] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[5] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[6] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[7] 张保惠,熊华龙,张天英,袁权. 基于水疱性口炎病毒(VSV)的溶瘤病毒研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 53-62.
[8] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[9] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[10] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[11] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[12] 何询,张鹏,张俊祥. 类器官的构建与应用进展[J]. 中国生物工程杂志, 2020, 40(12): 82-87.
[13] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[14] 彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.
[15] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.