Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (1): 71-76    DOI: 10.13523/j.cb.20190109
综述     
基于体外组装核糖核蛋白形式的CRISPR/Cas9基因编辑方法研究进展 *
潘海峰,杨晗,于思远,李廷栋,葛胜祥()
厦门大学分子疫苗学与分子诊断学国家重点实验室 厦门大学国家传染病诊断试剂与疫苗工程技术研究中心 厦门大学公共卫生学院 厦门 361005
Progress in Gene Editing Methods of CRISPR/Cas9 Based on in Vitro Assembly of Ribonucleoprotein
Hai-feng PAN,Han YANG,Si-yuan YU,Ting-dong LI,Sheng-xiang GE()
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361005,China
 全文: PDF(753 KB)   HTML
摘要:

CRISPR(clustered regularly interspaced short palindromic repeats)/Cas(CRISPR-associated)系统是近年来发展起来的新型的基因编辑技术,在生物医学领域得到广泛应用。CRISPR/Cas9系统需要在gRNA存在的条件下通过Cas9蛋白实现对基因组的定点编辑,通常情况下以慢病毒感染或质粒转染等方式提供Cas9和gRNA。但是,这些方式容易引起免疫反应及基因片段不可控插入,存在一定的风险,限制了CRISPR/Cas9技术在机体的应用。近年来发展起来的基于体外组装的核糖核蛋白(ribonucleoprotein, RNP)转导入胞的策略由于快捷安全、编辑的脱靶率低等优势引起广泛关注。对Cas9 RNP的转导方式及其应用进行了总结,并就其目前存在的问题进行探讨,以期为CRISPR/Cas9技术的进一步发展提供依据,为拓展其应用奠定基础。

关键词: CRISPR/Cas9核糖核蛋白CPP-RNP    
Abstract:

CRISPR (clustered ordered interspaced short palindromic repeats)/Cas (CRISPR-associated) system is a novel gene editing technology developed in recent years, which is widely used in the biomedical fields. The Cas9 protein and gRNA is essential for the site-specific editing of the genome by CRISPR/Cas9 system. Usually, Cas9 and gRNA are provided by lentivirus infection or plasmid transfection. However, these approaches are likely to cause adverse effects such as immune reactions and uncontrolled insertion of gene fragments, and limits the application of CRISPR/Cas9 systems. The strategy of RNP transduction based on in vitro assembly of Cas9 and gRNA developed in recent years has attracted wide attention because of its advantages such as rapid, safe and low off-target effect. The way of transduction of Cas9 RNP and its application are summarized, and its current problems are discussed in order to provide basis for the further development of CRISPR/Cas9 technology and lay a foundation for its application.

Key words: CRISPR/Cas9    Ribonucleoprotein    CPP-RNP
收稿日期: 2018-08-20 出版日期: 2019-02-28
ZTFLH:  Q78  
基金资助: * 厦门市重大科技专项资助项目(3502Z20171001-20170302)
通讯作者: 葛胜祥     E-mail: sxge@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘海峰
杨晗
于思远
李廷栋
葛胜祥

引用本文:

潘海峰,杨晗,于思远,李廷栋,葛胜祥. 基于体外组装核糖核蛋白形式的CRISPR/Cas9基因编辑方法研究进展 *[J]. 中国生物工程杂志, 2019, 39(1): 71-76.

Hai-feng PAN,Han YANG,Si-yuan YU,Ting-dong LI,Sheng-xiang GE. Progress in Gene Editing Methods of CRISPR/Cas9 Based on in Vitro Assembly of Ribonucleoprotein. China Biotechnology, 2019, 39(1): 71-76.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190109        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I1/71

图1  Cas9 RNP的组装及其作用机制
项目 质粒/病毒 体外转录Cas9 mRNA及gRNA RNP 参考文献
编辑效率 ++ ++ +++ [19]
插入突变 +++ - - [13]
免疫性 +++ ++ + [14]
脱靶率 +++ ++ + [18]
组分胞内表达时间 >12h >2h - [18]
组分稳定性 +++ + ++ [15,17]
表1  CRISPR/Cas9不同形式下基因编辑的比较
项目 物理转导 化学转导 纳米载体介导 细胞穿膜肽介导 参考文献
生理伤害 [24,40]
主动靶向性 无或弱 [19,40-41]
借助仪器 [40]
转染试剂使用 无或需要 需要 无或需要 [40]
转导效率 [19,31]
血清耐受性 [19]
细胞兼容性 [39]
表2  RNP不同转导方式特点比较
图2  CPP-Cas9 RNP复合物入胞实现基因编辑示意图
[1] Ishino Y, Shinagawa H, Makino K , et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987,169(12):5429-5433.
doi: 10.1109/TNS.1979.4329660 pmid: 3316184
[2] Qi L S, Larson M H, Gilbert L A , et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013,152(5):1173-1183.
doi: 10.1016/j.cell.2013.02.022 pmid: 23452860
[3] Jiang W, Bikard D, Cox D , et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013,31(3):233-239.
doi: 10.1038/nbt.2508 pmid: 23360965
[4] Nekrasov V, Staskawicz B, Weigel D , et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013,31(8):691-693.
doi: 10.1038/nbt.2655 pmid: 23929340
[5] Doudna J A, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096.
doi: 10.1126/science.1258096
[6] Zhang Y, Qin W, Lu X , et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nature Communications, 2017,8(1):118.
doi: 10.1038/s41467-017-00175-6 pmid: 28740134
[7] Suzuki K, Tsunekawa Y, Hernandez-Benitez R , et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016,540(7631):144-149.
doi: 10.1038/nature20565 pmid: 27851729
[8] Jaganathan D, Ramasamy K, Sellamuthu G , et al. CRISPR for crop improvement: an update review. Frontiers in Plant Science, 2018,9.DOI: 10.3389/fpls.2018.00985.
doi: 10.3389/fpls.2018.00985
[9] Gai T, Gersbach C A, Barbas C F , 3RD. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013,31(7):397-405.
doi: 10.1016/j.tibtech.2013.04.004 pmid: 3694601
[10] Chandrasegaran S . Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell & Gene Therapy Insights, 2017,3(1):33-41.
doi: 10.18609/cgti.2017.005
[11] Moscou M J, Bogdanove A J . A simple cipher governs DNA recognition by TAL effectors. Science, 2009,326(5959):1501.
doi: 10.1126/science.1178817
[12] Bi H, Yang B . Gene editing with TALEN and CRISPR/Cas in rice. Progress in Molecular Biology and Translational Science, 2017,149:81-98.
doi: 10.1016/B978-0-12-385071-3.00012-5 pmid: 21075325
[13] Woo J W, Kim J, Kwon S I , et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 2015,33(11):1162-1164.
doi: 10.1038/nbt.3389 pmid: 26479191
[14] Chen X, Goncalves M A . Engineered viruses as genome editing devices. Molecular Therapy: The Journal of the American Society of Gene Therapy, 2016,24(3):447-457.
doi: 10.1038/mt.2015.164 pmid: 26336974
[15] Kim S, Kim D, Cho S W , et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 2014,24(6):1012-1019.
doi: 10.1101/gr.171322.113 pmid: 24696461
[16] Nishimasu H, Ran F A, Hsu P D , et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014,156(5):935-949.
doi: 10.1016/j.cell.2014.02.001 pmid: 24529477
[17] Jinek M, Jiang F, Taylor D W , et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014,343(6176):1247997.
doi: 10.1126/science.1247997 pmid: 4184034
[18] Bueger A, Lindsay H, Felker A , et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development, 2016,143(11):2025-2037.
doi: 10.1242/dev.134809 pmid: 27130213
[19] Wang H X, Li M, Lee C M , et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical Reviews, 2017,117(15):9874-9906.
doi: 10.1021/acs.chemrev.6b00799 pmid: 28640612
[20] Schumann K, Lin S, Boyer E , et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(33):10437-10442.
doi: 10.1073/pnas.1512503112 pmid: 26216948
[21] Meccariello A, Monti S M, Romanelli A , et al. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Scientific Reports, 2017,7(1):10061.
doi: 10.1038/s41598-017-10347-5 pmid: 5577161
[22] Staahl B T, Benekareddy M, Coulon-Bainier C , et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nature Biotechnology, 2017,35(5):431-434.
doi: 10.1038/nbt.3806 pmid: 28191903
[23] Lin S, Staahl B T, Alla R K , et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014,3(6):e04766.
doi: 10.7554/eLife.04766 pmid: 4383097
[24] Wang M, Glass Z A, Xu Q . Non-viral delivery of genome-editing nucleases for gene therapy. Gene Therapy, 2017,24(3):144-150.
doi: 10.1038/gt.2016.72 pmid: 27797355
[25] Zuris J A, Thompson D B, Shu Y , et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 2015,33(1):73-80.
doi: 10.1038/nbt.3081
[26] Liang X, Potter J, Kumar S , et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology, 2015,208:44-53.
doi: 10.1016/j.jbiotec.2015.04.024 pmid: 26003884
[27] Kanchiswamy C N, Malnoy M, Velasco R , et al. Non-GMO genetically edited crop plants. Trends in Biotechnology, 2015,33(9):489-491.
doi: 10.1016/j.tibtech.2015.04.002
[28] Yue H, Zhou X, Cheng M , et al. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale, 2018,10(3):1063-1071.
doi: 10.1039/C7NR07999K
[29] Li L, He Z Y, Wei X W , et al. Challenges in CRISPR/CAS9 delivery: Potential roles of nonviral vectors. Human Gene Therapy, 2015,26(7):452-462.
doi: 10.1089/hum.2015.069 pmid: 26176432
[30] Glass Z, Lee M, Li Y , et al. Engineering the delivery system for CRISPR-based genome editing. Trends in Biotechnology, 2018,36(2):173-185.
doi: 10.1016/j.tibtech.2017.11.006 pmid: 29305085
[31] Kesharwani P, Iyer A K . Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discovery Today, 2015,20(5):536-547.
doi: 10.1016/j.drudis.2014.12.012 pmid: 4433832
[32] Jeong S H, Jang J H, Cho H Y , et al. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Archives of Pharmacal Research, 2018,41:797-814.
doi: 10.1007/s12272-018-1060-0
[33] Diaz D, Care A, Sunna A . Bioengineering strategies for protein-based nanoparticles. Genes, 2018,9(7):370.
doi: 10.3390/genes9070370
[34] Sun W, Ji W, Hall J M , et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angewandte Chemie, 2015,54(41):12029-2033.
doi: 10.1002/anie.201506030 pmid: 26310292
[35] Mout R, Ray M, Yesilbag T G , et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano, 2017,11(3):2452-2458.
doi: 10.1021/acsnano.6b07600 pmid: 28129503
[36] Lee K, Conboy M, Park H M , et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomedical Engineering, 2017,1(11):889-901.
doi: 10.1038/s41551-017-0137-2
[37] Wang M, Alberti K, Varone A , et al. Enhanced intracellular siRNA delivery using bioreducible lipid-like nanoparticles. Advanced Healthcare Materials, 2014,3(9):1398-1403.
doi: 10.1002/adhm.201400039 pmid: 24574196
[38] Ramakrishna S, Kwaku D A B, Beloor J , et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 2014,24(6):1020-1027.
doi: 10.1101/gr.171264.113
[39] Jones S W, Christison R, Bundell K , et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. British Journal of Pharmacology, 2005,145(8):1093-1102.
doi: 10.1038/sj.bjp.0706279 pmid: 15937518
[40] Kaestner L, Scholz A, Lipp P . Conceptual and technical aspects of transfection and gene delivery. Bioorganic &Medicinal Chemistry Letters, 2015,25(6):1171-1176.
doi: 10.1016/j.bmcl.2015.01.018 pmid: 25677659
[41] Rouet R, Thuma B A, Roy M D , et al. Receptor-mediated delivery of CRISPR-Cas9 endonuclease for cell-type-specific gene editing. Journal of the American Chemical Society, 2018,140(21):6596-6603.
doi: 10.1021/jacs.8b01551 pmid: 29668265
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[4] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[5] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[6] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[7] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[8] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[9] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[10] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[11] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[12] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[13] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[14] 刘赛宝,李亚芳,王辉,王伟,冉多良,陈洪岩,孟庆文. 利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*[J]. 中国生物工程杂志, 2019, 39(1): 46-54.
[15] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.