Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (1): 46-54    DOI: 10.13523/j.cb.20190106
技术与方法     
利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*
刘赛宝1,2,李亚芳1,2,王辉1,2,王伟2,冉多良1,**(),陈洪岩2,**(),孟庆文2,**()
1 新疆农业大学动物医学学院 乌鲁木齐 830000
2 中国农业科学院哈尔滨兽医研究所 兽医生物技术国家重点实验室 黑龙江省实验动物与比较医学重点实验室 哈尔滨 150069
Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9
Sai-bao LIU1,2,Ya-fang LI1,2,Hui WANG1,2,Wei WANG2,Duo-liang RAN1,**(),Hong-yan CHEN2,**(),Qing-wen MENG2,**()
1 College of Veterinary Medicine,Xinjiang Agricultural University, Urumqi 830000,China
2 State Key Laboratory of Veterinary Biotechnology,Heilongjiang Provincial Key Laboratory of Laboratory Animals and Comparative Medicine,Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences,Harbin 150069, China
 全文: PDF(1913 KB)   HTML
摘要:

Tpl2是调节I型(IFNα/β)和II型(IFNγ)IFN的关键调控因子,对病毒感染期间产生有效免疫应答至关重要。为了建立支持流感病毒高效繁殖的新型MDCK细胞系,利用CRISPR/Cas9基因编辑技术构建Tpl2基因敲除的MDCK细胞,绘制其细胞生长曲线;根据《中国药典》第三部,对细胞进行形态检查、内外源因子和致瘤性检测;流感病毒接种细胞(MOI=0.1),测定12h、24h、48h、72h细胞培养上清的血凝滴度及72h TCID50滴度。结果:靶基因组测序结果显示,获得一株稳定敲除Tpl2的MDCK细胞(MDCK-Tpl2 -/-);其与亲本细胞生长速率无显著差异,均为贴壁、上皮样细胞形态;细胞内细菌、真菌、支原体、病毒及致瘤性检测均为阴性;病毒接种后12h、24h、48h、72h,MDCK-Tpl2 -/-细胞培养上清的血凝效价提高了1.78~2.5倍。病毒接种后72h,MDCK-Tpl2 -/-细胞培养上清病毒的TCID50滴度提高了2.8倍。结果表明,利用Tpl2缺陷型MDCK细胞系可以提高流感病毒产量,为提升疫苗质量奠定基础。

关键词: Tpl2CRISPR/Cas9MDCK-Tpl2 -/-细胞细胞质控禽流感病毒    
Abstract:

Tpl2 is the key regulator of the regulation of I (IFNα/β) and II (IFNγ) IFN, which is essential for the effective immune response during virus infection. In order to establish a new MDCK cell line supporting the efficient reproduction of influenza virus, CRISPR/Cas9 gene editing technology was used to construct Tpl2 knockout MDCK cells, and its cell growth curve was drawn. Tests for characteristics, extraneous agents, endogenous agents and tumorigenicity are performed on cells according to Chinese Pharmacopeia Book III. Influenza virus was inoculated into cells (MOI=0.1), the hemagglutination titers of the cell culture supernatants at 12h, 24h, 48h, 72h, and the TCID50 titer at 72h were determined. The target genome sequencing results shows that a MDCK cell (MDCK-Tpl2 -/-) knocked out of Tpl2 stably is obtained;The Tpl2 knock out cell line is similar to wild type cells in growth characteristics, and the test of epithelial cell morphology, intracellular bacteria, fungi, mycoplasma, virus and tumorigenicity are negative. After inoculating virus for 12h, 24h, 48h, and 72h, the hemagglutination titer of MDCK-Tpl2 -/- cell culture supernatant increased by 1.78-2.5 times. At 72h after virus inoculation, the TCID50 titer of the MDCK-Tpl2 -/- cell culture supernatant virus increased 2.8 times.The results showed that Tpl2-deficient MDCK cell line could increase the production of influenza virus and lay a foundation for improving vaccine quality.

Key words: Tpl2    CRISPR/Cas9    MDCK-Tpl2 -/- cell line    Cell quality control    Avian influenza virus
收稿日期: 2018-03-28 出版日期: 2019-02-28
ZTFLH:  Q78  
基金资助: * 兽医生物技术国家重点实验室自主课题(SKLVBP2017010);国家自然科学基金(30771615);“十二五”农村领域国家科技计划资助项目(2011AA100305)
通讯作者: 冉多良,陈洪岩,孟庆文     E-mail: xjrdl7@163.com;chenhongyan@caas.cn;mqw@hvri.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘赛宝
李亚芳
王辉
王伟
冉多良
陈洪岩
孟庆文

引用本文:

刘赛宝,李亚芳,王辉,王伟,冉多良,陈洪岩,孟庆文. 利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*[J]. 中国生物工程杂志, 2019, 39(1): 46-54.

Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9. China Biotechnology, 2019, 39(1): 46-54.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190106        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I1/46

sgRNA Oligonucleotide sequence
Tpl2-sgRNA1 F:5'-CCGGGATCGGTCAGATACGGAACCG-3'
R:5'-AAACCGGTTCCGTATCTGACCGATC-3'
Tpl2-sgRNA2 F:5'-CCGGGTCCGATGTAATAGACATTA-3'
R:5'-AAACTAATGTCTATTACATCGGAC-3'
表1  Tpl2-sgRNA寡核苷酸序列
Primer Primer sequence Product(bp)
p-Tpl2-sgRNA1 F:5'-AGAGGTGCCTTGGTTGTC-3' 113
R:5'-ATTCCTGTGGTCGGTGTC-3'
P-Tpl2-sgRNA2 F:5'-GAGTACATGAGCACTGGAAGT-3' 188
R:5'-AGCAGAGATTCTGAATGCTCC-3'
表2  靶位点鉴定引物
图1  Tpl2基因敲除质粒 sgRNA 的设计
图2  Tpl2 sgRNA 测序结果
图3  质粒转染MDCK细胞
图4  聚丙烯酰胺凝胶电泳检测Tpl2-sgRNA1的靶向敲除效果
图5  Tpl2-sgRNA1-6#测序结果
图6  Tpl2-sgRNA1-6# F10代测序结果
图7  野生型及Tpl2敲除MDCK细胞生长曲线
图8  细胞形态观察
图9  细胞DNA荧光染色
图10  MDCK-Tpl2-/-细胞的致瘤性检查
图11  流感病毒接种细胞后血凝效价比较
[1] 吴雪伶, 冯建平, 樊金萍 , 等. 流感疫苗生产用新型细胞基质 MDCK细胞的质量控制研究. 中华微生物学和免疫学杂志, 2013,35(12):943-949.
doi: 10.3760/cma.j.issn.0254-5101.2013.12.011
Wu X L, Feng J P, Fan J P , et al. Study on quality control of MDCK cells used for the production of influenza vaccine. Chinese Journal of Microbiology and Immunology, 2013,35(12):943-949.
doi: 10.3760/cma.j.issn.0254-5101.2013.12.011
[2] Nerome K, Ishida M . The multiplication of an influenza C virus in an established line of canine kidney (MDCK) cells. Journal of General Virology, 1978,39(1):179-181.
doi: 10.1099/0022-1317-39-1-179 pmid: 641530
[3] Barrett P N, Mundt W, Kistner O , et al. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Review of Vaccines, 2009,8(5):607-618.
doi: 10.1586/erv.09.19 pmid: 19397417
[4] Bonjardim C, Ferreira P E . Interferons: signaling, antiviral and viral evasion. Immunology Letters, 2009,122(1):1-11.
doi: 10.1016/j.imlet.2008.11.002 pmid: 19059436
[5] Hamamoto I, Takaku H, Tashiro M , et al. High yield production of influenza virus in Madin Darby canine kidney (MDCK) cells with stable knockdown of IRF7. PLoS One, 2013,8(3):e59892.
doi: 10.1371/journal.pone.0059892 pmid: 23555825
[6] Liu A L, Li Y F, Qi W , et al. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses. Virus Genes, 2015,50(2):189-199.
doi: 10.1007/s11262-014-1151-z pmid: 25557928
[7] Yi E, Oh J, Giao N Q , et al. Enhanced production of enveloped viruses in BST-2-deficient cell lines. Biotechnology & Bioengineering, 2017,114(10):2289-2297.
doi: 10.1002/bit.26338 pmid: 28498621
[8] Luo W, Zhang J, Liang L , et al. Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathogens, 2018,14(1):e1006851.
doi: 10.1371/journal.ppat.1006851 pmid: 5792031
[9] Makris A, Patriotis C, Bear S E , et al. Genomic organization and expression of Tpl-2 in normal cells and moloney murine leukemia virus-induced rat T-cell lymphomas: activation by provirus insertion. Journal of Virology, 1993,67(7):4283-4289.
doi: 10.1016/0166-0934(93)90081-2 pmid: 237798
[10] Kuriakose T, Tripp R A, Watford W T . Tumor progression locus 2 promotes induction of IFNλ, interferon stimulated genes and antigen-specific CD8 + T cell responses and protects against influenza virus . PLoS Pathogens, 2015,11(8):e1005038.
doi: 10.1371/journal.ppat.1005038
[11] 国家药典委员会. 中华人民共和国药典2010版.北京: 中国医药科技出版社, 2010.
Chinese Pharmacopoeia Commission. Pharmacopoeia of People’ s Republic of China: 2010 Edition. Beijing:China Medical Science Press, 2010.
[12] Mussolino C, Cathomen T . RNA guides genome engineering. Nature Biotechnology, 2013,31(3):208-209.
doi: 10.1038/nbt.2527
[13] Onions D, Egan W, Jarrett R , et al. Validation of the safety of MDCK cells as a substrate for the production of a cell-derived influenza vaccine. Biologicals, 2010,38(5):544-551.
doi: 10.1016/j.biologicals.2010.04.003 pmid: 20537553
[14] Medema J K, Meijer J, Kersten A J , et al. Safety assessment of Madin Darby canine kidney cells as vaccine substrate. Developmental Biology, 2006,123:243-250.
pmid: 16566450
[15] Gregersen J P, Schmitt H J, Trusheim H , et al. Safety of MDCK cell culture-based influenza vaccines. Future Microbiology, 2011,6(2):143-152.
doi: 10.2217/fmb.10.161 pmid: 21366415
[16] 陈超, 池晓娟, 白庆玲 , 等. 甲型流感病毒感染过程中干扰素介导的天然免疫应答机制. 生物工程学报, 2015,31(12):1671-1681.
doi: 10.13345/j.cjb.150296
Chen C, Chi X J, Bai Q L , et al. Mechanisms underlying interferon-mediated host innate immunity during influenza A virus infection. Chin J Biotech, 2015,31(12):1671-1681.
doi: 10.13345/j.cjb.150296
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[4] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[5] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[6] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[7] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[8] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[9] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[10] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[11] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[12] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[13] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[14] 潘海峰,杨晗,于思远,李廷栋,葛胜祥. 基于体外组装核糖核蛋白形式的CRISPR/Cas9基因编辑方法研究进展 *[J]. 中国生物工程杂志, 2019, 39(1): 71-76.
[15] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.