Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (12): 14-20    DOI: 10.13523/j.cb.20181203
研究报告     
金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *
何亚南1,2,孙钰椋1,2,任雅坤2,梁盛英2,杨芬2,3,刘彦礼1,2,**(),林俊堂1,2,3
1 新乡医学院生命科学技术学院 新乡 453003
2 新乡医学院河南省医用组织再生重点实验室 新乡 453003
3 新乡医学院生物医学工程学院 新乡 453003
The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein
HE Ya-nan1,2,SUN Yu-liang1,2,REN Ya-kun2,LIANG Sheng-ying2,YANG Fen2,3,LIU Yan-li1,2,**(),LIN Jun-tang1,2,3
1 College of Life Science and Technology,Xinxiang Medical University, Xinxiang 453003,China
2 Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003,China
3 College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003,China
 全文: PDF(1083 KB)   HTML
摘要:

目的构建携带金黄色葡萄球菌类肠毒素K(staphylococcal enterotoxin-like K, SElK)和绿色荧光蛋白(green fluorescent protein, GFP)融合基因的工程菌,并对SElK-GFP融合蛋白进行初步生物学活性分析。方法 利用PCR和Overlap PCR克隆获得SElK-GFP融合基因,并插入pET28a表达载体中,通过菌落PCR,质粒双酶切及测序验证后,将构建成功的pET28a-SElK-GFP质粒转化到E.coli BL21菌株中进行诱导表达,通过 Ni +亲和磁珠试剂盒纯化获得SElK-GFP融合蛋白;并利用MTT法检测SElK-GFP刺激小鼠脾淋巴细胞增殖;ELISA法检测SElK-GFP尾静脉注射后小鼠血清中细胞因子IL-2和IFN-γ的分泌水平。 结果 成功构建能够表达SElK-GFP融合蛋白的工程菌,纯化获得高纯度的SElK-GFP融合蛋白可观测到明显的绿色荧光,融合蛋白生物学活性分析表明,SElK-GFP能够呈剂量依赖性地显著刺激小鼠脾淋巴细胞增殖;同时ELISA检测发现SElK-GFP可显著增加小鼠血清中细胞因子IL-2及IFN-γ的分泌水平。结论 成功克隆、表达及纯化获得高纯度的SElK-GFP融合蛋白,其不仅保留了SElK的超抗原活性,同时兼具GFP绿色荧光的可视性,为深入研究SElK生物学活性提供有利工具。

关键词: 金黄色葡萄球菌类肠毒素K超抗原T淋巴细胞原核表达    
Abstract:

Objective: The aim of this study is to construct the genetically engineered bacteria with full-length fusion gene of staphylococcal enterotoxin-like K (SElK) and green fluorescent protein (GFP), and further examine the biological activity of SElK-GFP fusion protein.Methods: SElK-GFP fusion gene was obtained by overlap PCR and cloned into the plasmid of pET28a. After being confirmed by colony PCR, double digestion and sequence, the successfully constructed pET28a-SElK-GFP was transformed into E.coli BL21, and the SElK-GFP was purified by Ni +-affinity magnetic beads. The proliferation of mouse derived spleen lymphocytes stimulated with SElK-GFP was examined by MTT assay; the concentration of IL-2 and IFN-γ in serum of the mice treated with SElK-GFP was examined by ELISA kits. Results: The SElK-GFP-producing strain was successfully constructed, and the green fluorescence can be observed in high purity SElK-GFP fusion protein. MTT assay showed that SElK-GFP could significantly stimulate the proliferation of spleen lymphocytes in a dose-dependent manner, and the concentration of IL-2 and IFN-γ in serum of the mice treated with SElK-GFP was significantly increased.Conclusion: SElK-GFP not only retained the green fluorescence signal of GFP, but also exhibited SElK superantgen activity, and provide a promising tool for the further study of the biological activity of SElK.

Key words: Staphylococcal enterotoxin-like K    Superantigen    T lymphocyte    Prokaryotic expression
收稿日期: 2018-06-06 出版日期: 2019-01-10
ZTFLH:  Q78  
基金资助: * 国家自然科学基金(31502045)
通讯作者: 刘彦礼     E-mail: liuyanli198512@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何亚南
孙钰椋
任雅坤
梁盛英
杨芬
刘彦礼
林俊堂

引用本文:

何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.

HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein. China Biotechnology, 2018, 38(12): 14-20.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181203        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I12/14

基因 引物 (5'- 3')
SEIK Sense CGG AAT TCC AAG GTG ATA TAG GAA
EcoR I
Antisense AGA GCC ACC TCC GCC TGA ACC GCC TCC ACC TAT CGT
The gene encoding linker peptide
TTC TTT ATA AGA
GFP Sense GGT GGA GGC GGT TCA GGC GGA GGT GGC TCT ATG GTG
The gene encoding linker peptide
AGC AAG GGC GAG GA
Antisense TCG CTC GAG TTA CTT GTA CAG CTC GTC CAT GCC
Xho I Stop codon
SEIK-GFP Sense SEIK- Sense
Antisense GFP- Antisense
表1  SElK、GFP和SElK-GFP基因克隆所需PCR引物
图1  SElK-GFP原核表达载体构建及鉴定
图2  SElK-GFP的诱导表达过程中绿色荧光的检测
图3  SElK-GFP蛋白的纯化和体外刺激小鼠淋巴细胞增殖活性检测
图4  SElK-GFP体内刺激细胞因子IL-2、IFN-γ的分泌水平
[1] Spaulding A R, Salgado-Pabón W, Kohler P L , et al. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev, 2013,26(3):422-447.
doi: 10.1128/CMR.00104-12
[2] Sundberg E J, Li Y, Mariuzza R A . So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Curr Opin Immunol, 2002,14(1):36-44.
doi: 10.1016/S0952-7915(01)00296-5 pmid: 11790531
[3] Müller-Alouf H, Carnoy C, Simonet M , et al. Superantigen bacterial toxins: state of the art. Toxicon, 2001,39(11):1691-1701.
doi: 10.1016/S0041-0101(01)00156-8 pmid: 11595632
[4] Omoe K, Imanishi K, Hu D L , et al. Biological properties of staphylococcal enterotoxin-like toxin type R. Infect Immun, 2004,72(6):3664-3667.
[5] Fernández M M, Bhattacharya S ,De Marzi M C ,et al.Superantigen natural affinity maturation revealed by the crystal structure of staphylococcal enterotoxin G and its binding to T-cell receptor Vβ 8.2. Proteins, 2007,68(1):389-402.
doi: 10.1002/prot.21388 pmid: 17427250
[6] Ono H K, Omoe K, Imanishi K , et al. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect Immun, 2008,76(11):4999-5005.
doi: 10.1128/IAI.00045-08 pmid: 2573384
[7] Zhao Y, Zhu A, Tang J , et al. Identification and measurement of staphylococcal enterotoxin M (SEM) from Staphylococcus aureus isolate associated with staphylococcal food poisoning. Lett Appl Microbiol, 2017,65(1):27-34.
doi: 10.1111/lam.12751 pmid: 28444877
[8] Ragin M J, Sahu N, August A . Differential regulation of cytokine production by CD1d-restricted NKT cells in response to superantigen staphylococcal enterotoxin B exposure. Infect Immun, 2006,74(1):282-288.
doi: 10.1128/IAI.74.1.282-288.2006 pmid: 16368982
[9] Liu Y, Xu M, Su Z , et al. Increased T-cell stimulating activity by mutated SEC2 correlates with its improved antitumour potency. Lett Appl Microbiol, 2012,55(5):362-369.
doi: 10.1111/j.1472-765X.2012.03303.x pmid: 22925007
[10] Zhou J, Liu L, Xu M , et al. T-cell proliferation and antitumour activities of a truncated mutant of staphylococcal enterotoxin C2 with decreased cytokine secretion. J Med Microbiol, 2013,62(3):451-456.
doi: 10.1099/jmm.0.047472-0 pmid: 23180479
[11] Mundi?ano J, Berguer P M, Cabrera G , et al. Superantigens increase the survival of mice bearing T cell lymphomas by inducing apoptosis of neoplastic cells. PloS One, 2010,5(12):e15694.
doi: 10.1371/journal.pone.0015694 pmid: 3008744
[12] Xu M, Wang X, Cai Y , et al. An engineered superantigen SEC2 exhibits promising antitumor activity and low toxicity. Cancer Immunol Immun, 2011,60(5):705-713.
doi: 10.1007/s00262-011-0986-6 pmid: 21331815
[13] Sun J, Zhao L, Teng L , et al. Solid tumor-targeted infiltrating cytotoxic T lymphocytes retained by a superantigen fusion protein. PLoS One, 2011,6(2):e16642.
doi: 10.1371/journal.pone.0016642 pmid: 3032773
[14] Seo K S, Lee S U, Park Y H , et al. Long-term staphylococcal enterotoxin C1 exposure induces soluble factor-mediated immunosuppression by bovine CD4 + and CD8 + T cells . Infect Immun, 2007,75(1):260-269.
doi: 10.1128/IAI.01358-06 pmid: 1828382
[15] Salgado-Pabón W, Breshears L, Spaulding A R , et al. Superantigens are critical for Staphylococcus aureus infective endocarditis, sepsis, and acute kidney injury. MBio, 2013,4(4):e00494-13.
doi: 10.1128/mBio.00494-13 pmid: 23963178
[16] M?rbe U M . Molecular effects of Staphylococcus aureus toxins and their contribution to pathogenesis. Utrecht: Utrecht University, 2013.
[17] Lina G, Bohach G A, Nair S P , et al. Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis, 2004,189(12):2334-2336.
[18] Paul M, Donald Y, Heather L , et al. Biochemical and biological properties of staphylococcal enterotoxin K. Infect Immun, 2001,69(1):360-366.
doi: 10.1128/IAI.69.1.360-366.2001 pmid: 11119525
[19] 刘彦礼, 牛荣成, 杨芬 , 等. 金葡菌类肠毒素K原核表达载体构建及其生物学活性分析. 中国生物工程杂志, 2015,35(12):45-50.
Liu Y L, Niu R C, Yang F , et al. The construction and functional analysis of staphylococcal enterotoxin like K. China Biotechnology, 2015,35(12):45-50.
[20] Orwin P M, Fitzgerald J R ,Leung D Y M , et al. Characterization of Staphylococcus aureus enterotoxin L. Infect Immun, 2003,71(5):2916-2919.
[21] Orwin P M ,Leung D Y M,Tripp T J, et al. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry, 2002,41(47):14033-14040.
doi: 10.1021/bi025977q pmid: 12437361
[22] Omoe K, Hu D L, Ono H K , et al. Emetic potentials of newly identified staphylococcal enterotoxin-like toxins. Infect Immun, 2013,81(10):3627-3631.
doi: 10.1128/IAI.00550-13 pmid: 23876808
[23] Krakauer T . Update on staphylococcal superantigen-induced signaling pathways and therapeutic interventions. Toxins, 2013,5(9):1629-1654.
doi: 10.3390/toxins5091629 pmid: 3798877
[24] Omoe K, Nunomura W, Kato H , et al. High affinity of interaction between superantigen and T cell receptor Vβ molecules induces a high level and prolonged expansion of superantigen-reactive CD4+ T cells . J Biol Chem, 2010,285(40):30427-30435.
[25] Fraser J D, Proft T . The bacterial superantigen and superantigen-like proteins. Immunol Rev, 2008,225(1):226-243.
doi: 10.1111/j.1600-065X.2008.00681.x pmid: 18837785
[26] Malchiodi E L, Eisenstein E, Fields B A , et al. Superantigen binding to a T cell receptor beta chain of known three-dimensional structure. J Exp Med, 1995,182(6):1833-1845.
doi: 10.1084/jem.182.6.1833 pmid: 2192249
[27] Leder L, Llera A, Lavoie P M , et al. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor β chain and major histocompatibility complex class II. J Exp Med, 1998,187(6):823-833.
doi: 10.1084/jem.187.6.823 pmid: 9500785
[28] Khandekar S S, Brauer P P, Naylor J W , et al. Affinity and kinetics of the interactions between an αβ T-cell receptor and its superantigen and class II-MHC/peptide ligands. Mol Immunol, 1997,34(6):493-503.
doi: 10.1038/sj.emboj.7601220 pmid: 9307065
[29] Günther S, Varma A K, Moza B , et al. A novel loop domain in superantigens extends their T cell receptor recognition site. J Mol Biol, 2007,371(1):210-221.
[30] Xu M K, Zhang C G . Gene expression and function study of fusion immunotoxin anti-Her-2-scFv-SEC2 in Escherichia coli. Appl Microbiol Biot, 2006,70(1):78-84.
doi: 10.1007/s00253-005-0049-z pmid: 16080007
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[3] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[4] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[5] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[6] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[7] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[8] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[9] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[10] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[11] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[12] 祖力皮也·吐尔逊, 曹春宝, 温浩, 丁剑冰, 德力夏提·依米提. 细粒棘球蚴EgG1Y162基因进化分析、表达及鉴定[J]. 中国生物工程杂志, 2016, 36(4): 78-87.
[13] 周亮, 叶浩, 周瓅, 关文, 李京敬, 郜尽, 韩伟, 俞雁. 人CXCL4蛋白原核表达与纯化[J]. 中国生物工程杂志, 2016, 36(1): 7-13.
[14] 黄健, 黄美容, 朱杰华, 骆诗露, 闵迅. 肺炎链球菌SP0306蛋白的表达纯化及结晶研究[J]. 中国生物工程杂志, 2015, 35(6): 21-25.
[15] 龚隆财, 罗镇明, 杨雁青, 王振宇, 向军俭, 王宏. cTnI-linker-TnC融合蛋白的原核表达及鉴定[J]. 中国生物工程杂志, 2015, 35(4): 48-53.