Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (11): 66-75    DOI: 10.13523/j.cb.20181109
综述     
肠道中多不饱和脂肪酸及其衍生物研究进展 *
左正三1,郭东升2,纪晓俊2,宋萍2,黄和3,**()
1. 南京北盛荣能源科技有限公司 南京 211178
2. 南京工业大学生物与制药工程学院 南京 211816
3. 南京工业大学药学院 南京 211816
Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review
Zheng-san ZUO1,Dong-sheng GUO2,Xiao-jun JI2,Ping SONG2,He HUANG3,**()
1. Nanjing North Shengrong Energy Technology Co. Ltd, Nangjing 211178,China
2. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
3. School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
 全文: PDF(1238 KB)   HTML
摘要:

肠道菌群是人体微生态学的重要组成部分,也是最大、最复杂的微生态系统,在宿主的营养吸收、肠道与免疫系统发育等重要生理过程中发挥作用,与人类健康和疾病密切相关。这些共生微生物排除肠道病原体的功能主要依赖于其产生的生物活性物质,如多不饱和脂肪酸等。同时这些脂肪酸在肠道微生物的作用下能够进一步转化为具有特殊结构和功能的多不饱和脂肪酸衍生物。这些多不饱和脂肪酸衍生物对维持健康稳定的肠道菌群至关重要。此外,多不饱和脂肪酸在宿主防御和免疫中发挥了多重关键作用,包括抗癌、抗炎、抗氧化活性,以及降低肠道致病菌的竞争能力等。主要对肠道中多不饱和脂肪酸的来源及其重要的生理功能,以及肠道微生物对多不饱和脂肪酸的转化衍生机制进行了综述,并提出肠道微生物是特殊多不饱和脂肪酸及衍生物生产菌株潜在的种子及基因库,以扩展功能油脂生产菌株的来源。

关键词: 多不饱和脂肪酸肠道微生物生物转化羟基脂肪酸    
Abstract:

Gut microbiota is an important part of human micro-ecology, and also the largest and most complex microbial ecosystem. Gut microbiota were recently proposed to have an important role in the host nutrient absorption, the development of the intestinal immune system, and other important physiological processes; so they are closely related to human health and disease. The exclusion of enteric pathogens by these commensal microbes partially depends upon the production of bioactive compounds such as polyunsaturated fatty acids (PUFAs) et al. At the same time, these fatty acids can be further transformed into polyunsaturated fatty acid derivatives with special structure and function under the action of enteric microorganisms. These key enteric microbial byproducts are critical to maintaining a healthy gut flora. In addition, PUFAs play multiple key roles in host defense and immunity, including anti-inflammation and anti-oxidative activity, as well as the competition of intestinal pathogens. The source of polyunsaturated fatty acids in the intestinal tract and its important physiological functions, and further introduces the transformation and derivation mechanism of intestinal microorganisms to polyunsaturated fatty acids were mainly reviewed. And it pointed out that enteric microorganisms are the production strain seed bank of special polyunsaturated fatty acids and derivatives, so increase the microbial species of functional oils production.

Key words: Polyunsaturated    fatty    acids    Enteric    microorganism    Biotransformation    Hydroxyl    fatty    acids
收稿日期: 2018-04-16 出版日期: 2018-12-06
ZTFLH:  Q547  
基金资助: * 江苏省高等学校自然科学研究面上项目( 17KJB530006)、江苏高校品牌专业建设工程( PPZY2015B155)资助项目
通讯作者: 黄和     E-mail: biotech@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
左正三
郭东升
纪晓俊
宋萍
黄和

引用本文:

左正三,郭东升,纪晓俊,宋萍,黄和. 肠道中多不饱和脂肪酸及其衍生物研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 66-75.

Zheng-san ZUO,Dong-sheng GUO,Xiao-jun JI,Ping SONG,He HUANG. Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review. China Biotechnology, 2018, 38(11): 66-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181109        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I11/66

通用名 缩小 来源 生理功能 参考
文献
食物来源 微生物生产
α-linolenic acid ALA (ω-3) 亚麻籽、油菜、大豆、南瓜、豆腐、核桃等 必须通过食物摄取 降低心脏病、降低胆固醇、减少高血压、改善哮喘 [12]
Docosahexaenoic
acid
DHA (ω-3) 三文鱼、金枪鱼、沙丁鱼、贝类、母乳等 肠道微生物:Shewanella
微藻:Chlorella
Nannochloropsis
预防老年痴呆、抗癌、促进幼儿发育、有利于神经系统及心血管健康 [13-14]
Docosapentaenoic
acid
DPA (ω-3) 鲑鱼、鲱鱼、牛肉、母乳等 肠道微生物:Shewanella
微藻:ThraustochytriumPavlova
预防老年痴呆、抗癌、促进幼儿发育、抑制血栓形成、加强愈合反应 [15]
Eicosapentaenoic
acid
EPA (ω-3) 鱼肝、三文鱼、金枪鱼、沙丁鱼、海藻、母乳等 肠道微生物:Shewanella
Pneumatophoru
微藻:ThraustochytriumPavlova
预防老年痴呆、抗癌、促进幼儿发育、减少抑郁、减轻红斑狼疮 [16]
Arachidonic
acid
ARA (ω-6) 花生、肝脏、猪肾上腺及蛋黄等 哺乳动物可自身合成
霉菌:Mortierella
促进肌肉生长、预防老年痴呆 [17]
γ-linolenic acid GLA (ω-6) 螺旋藻、樱草花、黑醋栗、琉璃苣、真菌油等 哺乳动物可自身合成 减轻过敏、预防高血压、预防乳腺癌、改善骨质疏松症 [18]
Linoleic acid LA (ω-6) 橄榄、可可、花生、油菜、杏仁、芝麻、玉米等 肠道微生物:BifidobacteriumLactobacillus, LactococcusStreptococcus 降体脂、改善血脂、抗氧化、正常糖耐量、改善血胰岛素过多症 [19]
Oleic acid OA (ω-9) 橄榄等 肠道微生物:BifidobacteriumLactobacillus 降低胆固醇、预防高血压、降低乳腺癌的发病风险 [20]
表1  常见PUFAs的来源与功能
肠道结构分布 主要微生物 功能与活性 PUFAs生产 参考文献
小肠 十二指肠 Helicobacter pyloriLactobacillus spp.、Streptococcus spp. 肠道屏障结构、合成维生素、代谢致癌物、刺激肠道免疫、产生抗菌化合物、与病原菌形成竞争机制等 摄取多不饱和脂肪酸、合成积累异构化多不饱和脂肪酸 [24]
空肠 Lactobacillus spp.、Streptococcus spp.、Staphyloccocu spp.
回肠 E. coliBacteroides spp.、Clostridium spp.、Coprococcus spp.、Enterococcus spp.、Klebsiella spp.、Lactobacillus spp.、Ruminococcus spp.
大肠 盲肠 Firmicutes Gr.、Bacteroidetes Gr.、Actionobacteria Gr.、Verrucomicrobia Gr.、Proteobacteria Gr. 分解消化纤维、生成大量脂肪酸、合成维生素等 消化膳食纤维、异构化亚麻酸、亚油酸、油酸等 [25]
结肠
直肠
表2  主要的肠道微生物的分布区域与合成的PUFAs
图1  亚油酸在乳酸菌中的生物加氢途径
图2  厌氧细菌中共轭脂肪酸和部分PUFAs合成途径
[1] Yun Y, Yin H, Gao Z , et al. Intestinal tract is an important organ for lowering serum uric acid in rats. PLoS One, 2017,12(12):e0190194.
doi: 10.1371/journal.pone.0190194 pmid: 29267361
[2] Peng M, Biswas D . Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Critical Reviews in Food Science and Nutrition, 2017,57(18):3987-4002.
doi: 10.1080/10408398.2016.1203286 pmid: 27438132
[3] Sommer F, Bäckhed F . The gut microbiota-masters of host development and physiology. Nature Reviews Microbiology, 2013,11(4):227-238.
doi: 10.1038/nrmicro2974 pmid: 23435359
[4] Oliveira M R, Nabavi S F, Nabavi S M , et al. Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends in Food Science & Technology, 2017,67:76-92.
doi: 10.1016/j.tifs.2017.06.019
[5] Ward O P, Singh A . Omega-3/6 fatty acids: alternative sources of production. Process Biochemistry, 2005,40(12):3627-3652.
doi: 10.1016/j.procbio.2005.02.020
[6] Murri M, Leiva I, Gomezzumaquero J M , et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Medicine, 2013,1(1):46.
doi: 10.1186/1741-7015-11-46 pmid: 3621820
[7] Muhlroth A, Li K, Rokke G , et al. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Marine Drugs, 2013; 11(11):4662-4697.
doi: 10.3390/md11114662 pmid: 3853752
[8] Pereira S A, Jerãnimo G T, Marchiori N C , et al. Tadpoles fed supplemented diet with probiotic bacterium isolated from the intestinal tract of bullfrog Lithobates catesbeianus: Haematology, cell activity and electron microscopy. Microbial Pathogenesis, 2017,114:255-263
doi: 10.1016/j.micpath.2017.11.033 pmid: 29174701
[9] Ogawa J, Kishino S , Yonejima Y. Intestinal tract-protecting agent containing hydroxylated fatty acid: United States, US9539229. 2017 -10-1.
[10] Ren L J, Zhuang X Y, Chen S L , et al. Introduction of omega-3 desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. Journal of Agricultural and Food Chemistry, 2015,63(44):9770-9776.
doi: 10.1021/acs.jafc.5b04238 pmid: 26494394
[11] Gong Y, Liu J, Jiang M , et al. Improvement of Omega-3 docosahexaenoic acid production by marine dinoflagellate Crypthecodinium cohnii using rapeseed meal hydrolysate and waste molasses as feedstock. PLoS One, 2015,10(5):e0125368.
doi: 10.1371/journal.pone.0125368 pmid: 4420278
[12] Galli C, Risé P . Fish consumption, omega 3 fatty acids and cardiovascular disease. The science and the clinical trials. Nutrition & Health, 2009,20(1):11-20.
doi: 10.1177/026010600902000102 pmid: 19326716
[13] Yashodhara B M, Umakanth S, Pappachan J M , et al. Omega-3 fatty acids: a comprehensive review of their role in health and disease. Postgraduate Medical Journal, 2009,85(1000):84-90.
doi: 10.1136/pgmj.2008.073338 pmid: 19329703272
[14] Weaver K L, Ivester P, Seeds M , et al. Effect of dietary fatty acids on inflammatory gene expression in healthy humans. Journal of Biological Chemistry, 2009,284(23):15400-15407.
doi: 10.1074/jbc.M109.004861 pmid: 2708836
[15] Abedi E, Sahari M A . Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Science & Nutrition, 2014,2(5):443-463.
doi: 10.1002/fsn3.121 pmid: 4237475
[16] Harris W . Omega-6 and omega-3 fatty acids: partners in prevention. Current Opinion in Clinical Nutrition & Metabolic Care, 2010,13(2):125-129.
doi: 10.1097/MCO.0b013e3283357242 pmid: 20145438
[17] Brinton E A, Mason R P . Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA). Lipids in Health and Disease, 2017,16(1):23.
doi: 10.1186/s12944-017-0415-8 pmid: 28137294
[18] Simopoulos A P . Evolutionary aspects of diet: the Omega-6/Omega-3 ratio and the brain. Molecular Neurobiology, 2011,44(2):203-215.
doi: 10.1007/s12035-010-8162-0 pmid: 21279554
[19] Vanhala M, Saltevo J, Soininen P , et al. Serum omega-6 polyunsaturated fatty acids and the metabolic syndrome: a longitudinal population-based cohort study. American Journal of Epidemiology, 2012,176(3):253-260.
doi: 10.1093/aje/kwr504 pmid: 22791741
[20] Terã S ,Barcelã-coblijn G, Benet M, et al. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(37):13811-13816.
doi: 10.1073/pnas.0807500105 pmid: 18772370
[21] Guo D S, Ji X J, Ren L J , et al. Improving docosahexaenoic acid production by Schizochytrium sp. using a newly designed high-oxygen-supply bioreactor. AIChE Journal, 2017,63(10):4278-4286.
doi: 10.1002/aic.15783
[22] Ji X J, Ren L J, Nie Z K , et al. Fungal arachidonic acid-rich oil: research, development and industrialization. Critical Reviews in Biotechnology. 2014,34(3):197-214.
doi: 10.3109/07388551.2013.778229 pmid: 23631634
[23] Ogawa J, Sakuradani E, Kishino S , et al. Microbial production of functional polyunsaturated fatty acids and their derivatives. Microbial Production, 2014,1:207-218.
doi: 10.1007/978-4-431-54607-8_18
[24] Walter J, Ley R . The human gut microbiome: ecology and recent evolutionary changes. Annual Review of Microbiology, 2010,65(65):411-429.
doi: 10.1146/annurev-micro-090110-102830 pmid: 21682646
[25] Besten G D, Eunen K V, Groen A K , et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 2013,54(9):2325-2340.
doi: 10.1194/jlr.R036012 pmid: 3735932
[26] Xie D M, Miller E, Tyreus B , et al. Sustainable production of omega-3 eicosapentaenoic acid by fermentation of metabolically engineered Yarrowia lipolytica. Green Chemistry and Sustainable Technology, 2016,1:17-33.
doi: 10.1007/978-3-662-53704-6_2
[27] Xue Z, Sharpe P L, Hong S P , et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 2013,31(8):734-740.
doi: 10.1038/nbt.2622 pmid: 2020
[28] Pohndorf R S, Camara á S ,Larrosa A P Q, , et al. Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods. Biomass & Bioenergy, 2016,93:25-32.
doi: 10.1016/j.biombioe.2016.06.020
[29] Guo D S, Ji X J, Ren L J , et al. Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp. Chemical Engineering Science, 2017,176:600-608.
[30] Zhang A H, Ji X J, Wu W J , et al. Lipid fraction and intracellular metabolite analysis reveal the mechanism of arachidonic acid-rich oil accumulation in the aging process of Mortierella alpina. Journal of Agricultural and Food Chemistry, 2015,63(44):9812-9819.
doi: 10.1021/acs.jafc.5b04521 pmid: 26482338
[31] Ji X J, Zhang A H, Nie Z K , et al. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy. Bioresource Technology, 2014,170:356-360.
doi: 10.1016/j.biortech.2014.07.098 pmid: 25151081
[32] Jiang T, Björck L, Fondén R . Production of conjugated linoleic acid by dairy starter cultures. Journal of Applied Microbiology. 1998; 85(1):95-102.
doi: 10.1046/j.1365-2672.1998.00481.x pmid: 9721660
[33] Coakley M, Ross R P, Nordgren M , et al. Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. Journal of Applied Microbiology, 2003,94(1):138-145.
doi: 10.1046/j.1365-2672.2003.01814.x pmid: 12492934
[34] Guarner F, Malagelada J R . Gut flora in health and disease. Lancet, 2003,361(9356):512-519.
doi: 10.1016/S0140-6736(03)12489-0
[35] Vedantam G, Hecht D W . Antibiotics and anaerobes of gut origin. Current Opinion in Microbiology, 2003,6(5):457-461.
doi: 10.1016/j.mib.2003.09.006 pmid: 14572537
[36] Khanna S , ToshP K. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clinic Proceedings, 2014,89(1):107-114.
doi: 10.1016/j.mayocp.2013.10.011 pmid: 24388028
[37] Guo D S, Ji X J, Ren L J , et al. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp. Bioresource Technologyogy, 2016,216:422-427.
doi: 10.1016/j.biortech.2016.05.044 pmid: 27262097
[38] Hu X C, Ren L J, Chen S L , et al. The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp. Bioprocess and Biosystems Engineering, 2015,38(11):2129-2136.
doi: 10.1007/s00449-015-1452-1 pmid: 26350999
[39] Khozin-goldberg I, Iskandarov U, Cohen Z . LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 2011,91(4):905.
doi: 10.1007/s00253-011-3441-x pmid: 21720821
[40] Plourde M, Cunnane S C . Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Applied Physiology, Nutrition, and Metabolism, 2007,32(4):619.
doi: 10.1139/H07-034 pmid: 17622276
[41] Macouzet M, Lee B H, Robert N . Genetic and structural comparison of linoleate isomerases from selected food-grade bacteria. Journal of Applied Microbiology, 2010,109(6):2128-2134.
doi: 10.1111/j.1365-2672.2010.04844.x pmid: 20825518
[42] Liu X, Ji X, Zhang H , et al. Development of a defined medium for arachidonic acid production by Mortierella alpina using a visualization method. Applied Biochemistry and Biotechnology, 2012,168(6):1516-1527.
doi: 10.1007/s12010-012-9874-6 pmid: 23054814
[43] Wang C, Yang X, Ma H , et al. Production of eicosapentaenoic acid (EPA, 20:5n-3) in maize (Zea mays L.) through the alternative Δ8 desaturation pathway mediated by particle bombardment. Acta Physiologiae Plantarum, 2017,39(5):110.
doi: 10.1007/s11738-017-2408-7
[44] Ryckebosch E, Bruneel C ,Termote-verhalle R, , et al. Nutritional evaluation of microalgae oils rich in Omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry, 2014,160(1):393-400.
doi: 10.1016/j.foodchem.2014.03.087 pmid: 24799253
[45] Louis P, Hold G L, Flint H J . The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 2014,12(10):661-672.
doi: 10.1038/nrmicro3344 pmid: 25198138
[46] Harrison L M, Balan K V, Babu U S . Dietary fatty acids and immune response to food-borne bacterial infections. Nutrients, 2013,5(5):1801-1822.
doi: 10.3390/nu5051801 pmid: 3708349
[47] Shin R, Suzuki M, Morishita Y . Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. Journal of Medical Microbiology, 2002,51(3):201-206.
doi: 10.1099/0022-1317-51-3-201 pmid: 11871614
[48] Sun Y , O’riordan M X D. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Advances in Applied Microbiology, 2013,85:93-118.
doi: 10.1016/B978-0-12-407672-3.00003-4
[49] Peng M, Aryal U, Cooper B , et al. Metabolites produced during the growth of probiotics in cocoa supplementation and the limited role of cocoa in host-enteric bacterial pathogen interactions. Food Control, 2015,53:124-133.
doi: 10.1016/j.foodcont.2015.01.014
[50] Babu U, Wiesenfeld P, Gaines D , et al. Effect of long chain fatty acids on Salmonella killing, superoxide and nitric oxide production by chicken macrophages. Internat J Food Microbiol, 2009,132(1):67-72.
doi: 10.1016/j.ijfoodmicro.2009.03.017 pmid: 19375809
[51] Lacharme-lora L, Chaloner G, Gilroy R , et al. B lymphocytes play a limited role in clearance of Campylobacter jejuni from the chicken intestinal tract. Scientific Reports, 2017,7:45090.
doi: 10.1038/srep45090 pmid: 28332622
[52] Garner C D, Antonopoulos D A, Wagner B , et al. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar typhimurium murine model of infection. Infect Immunity, 2009,77(7):2691-2702.
doi: 10.1128/IAI.01570-08 pmid: 2708583
[53] Sunkara L T, Jiang W, Zhang G . Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One, 2012,7(11):e49558.
doi: 10.1371/journal.pone.0049558 pmid: 3499459
[54] Willamil J, Creus E, Pãrez J F , et al. Effect of a microencapsulated feed additive of lactic and formic acid on the prevalence of Salmonella in pigs arriving at the abattoir. Archives of Animal Nutrition, 2011,65(6):431-444.
doi: 10.1080/1745039X.2011.623047 pmid: 22256674
[55] Kepler C R, Tove S B . Biohydrogenation of unsaturated fatty acids iii. purification and properties of a linoleate δ12-cis,δ11-trans-isomerase from butyrivibrio fibrisolvens. Journal of Biological Chemistry, 1967,246(16):5686-5692.
[56] Kishino S, Takeuchi M, Park S B , et al. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(44):17808-17813.
doi: 10.1073/pnas.1312937110 pmid: 24127592
[57] Kishino S, Ogawa J, Yokozeki K , et al. Microbial production of conjugated fatty acids. Lipid Technology, 2010,21(8-9):177-181.
doi: 10.1002/lite.200900044
[58] Kishino S, Park S B, Takeuchi M , et al. Novel multi-component enzyme machinery in lactic acid bacteria catalyzing C=C double bond migration useful for conjugated fatty acid synthesis. Biochem Biophys Res Commun, 2011,416(1-2):188-193.
doi: 10.1016/j.bbrc.2011.11.022 pmid: 22093837
[59] Kishino S, Ogawa J, Yokozeki K , et al. Linoleic acid isomerase in Lactobacillus plantarum AKU1009a proved to be a multi-component enzyme system requiring oxidoreduction cofactors. Bioscience, Biotechnology, & Biochemistry, 2011,75(2):318-322.
[60] Kishino S, Ogawa J, Ando A , et al. Structural analysis of conjugated linoleic acid produced by Lactobacillus plantarum, and factors affecting isomer production. Bioscience, Biotechnology, & Biochemistry, 2003,67(1):179-182.
[61] Kishino S, Ogawa J, Ando A , et al. Ricinoleic acid and castor oil as substrates for conjugated linoleic acid production by washed cells of Lactobacillus plantarum. Bioscience, Biotechnology, & Biochemistry, 2002,66(10):2283-2286.
[62] Kishino S, Ogawa J, Ando A , et al. Microbial production of conjugated γ‐linolenic acid from γ‐linolenic acid by Lactobacillus plantarum AKU 1009a. Journal of Applied Microbiology, 2010,108(6):2012-2018.
doi: 10.1111/j.1365-2672.2009.04609.x pmid: 19919619
[63] Kishino S, Ogawa J, Ando A , et al. Conjugated α--linolenic acid production from α‐linolenic acid by Lactobacillus plantarum AKU 1009a. European Journal of Lipid Science and Technology, 2003,105(10):572-577.
doi: 10.1002/ejlt.200300806
[64] Kishino S, Ogawa J, Omura Y , et al. Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. Journal of the American Oil Chemists’Society, 2002,79(2):159-163.
doi: 10.1007/s11746-002-0451-4
[65] Ando A, Ogawa J, Kishino S , et al. CLA production from ricinoleic acid by lactic acid bacteria. Journal of the American Oil Chemists’ Society, 2003,80(9):889-894.
doi: 10.1007/s11746-003-0790-1
[66] Ando A, Ogawa J, Kishino S , et al. Conjugated linoleic acid production from castor oil by Lactobacillus plantarum JCM 1551. Enzyme and Microbial Technology, 2004,35(1):40-45.
doi: 10.1016/j.enzmictec.2004.03.013
[67] Takeuchi M, Kishino S, Tanabe K , et al. Hydroxy fatty acid production by Pediococcus sp. European Journal of Lipid Science and Technology, 2013,115(4):386-393.
doi: 10.1002/ejlt.201200414
[68] Ogawa J, Kishino S, Ando A , et al. Production of conjugated fatty acids by lactic acid bacteria. Journal of Bioscience and Bioengineering, 2005,4:355.
doi: 10.1263/jbb.100.355 pmid: 16310724
[1] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[2] 赵志强,LacmataTamekouStephen,咸漠,刘修涛,冯新军,赵广. 重组大肠杆菌转化甘油合成聚3-羟基丙酸-co-乳酸 *[J]. 中国生物工程杂志, 2018, 38(2): 46-53.
[3] 窦一涵, 李映, 赵鹏, 范如婷, 田平芳. 重组肺炎克雷伯氏菌转化甘油为聚3-羟基丙酸[J]. 中国生物工程杂志, 2017, 37(6): 86-92.
[4] 姚韧辉, 董卓, 李会. Gibberella intermedia C2转化4-雄甾烯-3、17-二酮的研究[J]. 中国生物工程杂志, 2017, 37(3): 73-77.
[5] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[6] 曾斯雨, 施天穹, 石焜, 任路静, 黄和, 纪晓俊. 高山被孢霉遗传操作系统的构建与应用[J]. 中国生物工程杂志, 2016, 36(7): 112-116.
[7] 张奇, 张露, 徐友强, 裴疆森, 程池. 生物转化法制备L-天冬酰胺[J]. 中国生物工程杂志, 2016, 36(1): 63-67.
[8] 钱鑫, 郭红颜, 周庆峰. 4-羟基苯乙酸-3-羟化酶A重组表达菌株的构建及其对羟基酪醇的生物转化研究[J]. 中国生物工程杂志, 2015, 35(3): 56-60.
[9] 陈旭升, 任喜东, 曾昕, 董难, 毛忠贵. 链霉菌Streptomyces sp. M-Z18转化前体L-赖氨酸合成ε-聚赖氨酸的研究[J]. 中国生物工程杂志, 2013, 33(1): 53-59.
[10] 焦静雨, 吴绵斌, 赵炯烽, 林建平, 杨立荣. 基因工程技术改造木糖醇生产菌株的研究进展[J]. 中国生物工程杂志, 2012, 32(11): 124-131.
[11] 焦静雨, 吴绵斌, 赵炯烽, 林建平, 杨立荣. 基因工程技术改造木糖醇生产菌株的研究进展[J]. 中国生物工程杂志, 2012, 32(11): 124-131.
[12] 徐勇, 王荥, 朱均均, 勇强, 余世袁. 木糖高效生物转化的新出路[J]. 中国生物工程杂志, 2012, 32(05): 113-119.
[13] 郭明 胡昌华. 生物转化—从全细胞催化到代谢工程[J]. 中国生物工程杂志, 2010, 30(04): 110-115.
[14] 程东庆,沃兴德. 生物转化技术在中药现代化中的应用[J]. 中国生物工程杂志, 2008, 28(专刊): 316-320.
[15] 武珅,杜卫华,郝海生,王栋,张诺,朱化彬. Fat-1基因在n-3多不饱和脂肪酸功能研究中的应用[J]. 中国生物工程杂志, 2008, 28(8): 136-141.