Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (11): 32-41    DOI: 10.13523/j.cb.20181105
技术与方法     
转基因水稻BPL9K-2事件特异性检测方法的建立 *
崔帅1,2,王作平1,3,于江辉1,肖国樱1,**()
1. 中国科学院亚热带农业生态研究所 亚热带农业生态过程重点实验室 长沙 410125
2. 中国科学院大学 北京 100049
3. 北京市农林科学院 北京农业生物技术研究中心 北京市农业基因资源和生物技术重点实验室 北京 100097
Event-specific Detection Methods of Genetically Modified Rice BPL9K-2
Shuai CUI1,2,Zuo-ping WANG1,3,Jiang-hui YU1,Guo-ying XIAO1,**()
1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture,Chinese Academy of Sciences, Changsha 410125, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing Agro-biotechnology Research Center,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
 全文: PDF(1443 KB)   HTML
摘要:

利用hiTAIL-PCR(high efficient thermal asymmetric interlaced PCR)法扩增获得了转基因水稻BPL9K-2的外源基因插入位点的左旁侧序列450bp,与水稻参考基因组数据比对发现其左边界插入在水稻基因组第10号染色体短臂的1 037 765位核苷酸残基之后。根据水稻参考基因组序列和外源基因右边界序列,设计引物扩增得到485bp的特异片段,通过数据库比对发现其右边界插入在水稻基因组第10号染色体短臂的1 037 825位核苷酸残基之前。因为外源基因插入和非正常重组,水稻基因组上缺失了59个核苷酸。基于左右旁侧序列,建立了转基因水稻BPL9K-2的事件特异性定性PCR检测方法,可以分别扩增到片段大小为449bp和485bp的特异条带。该方法特异性好,灵敏度高,能够在BPL9K-2基因组DNA相对含量为0.1%的模板中检测出转基因成分。依据旁侧序列,建立了快速鉴定转基因后代植株外源基因型的三引物PCR检测方法。这些方法的建立,为转基因水稻BPL9K-2的应用和检测提供了技术支持。

关键词: 转基因水稻旁侧序列事件特异性检测基因型鉴定    
Abstract:

The hiTAIL-PCR (high-efficiency thermal asymmetric interlaced PCR) was adopted to study the characteristic of insertion site in genetically modified rice BPL9K-2. As a result, a 450bp fragment of left flanking sequence was discovered. By comparison with rice genome database, the insertion site of exogenous gene located on No. 1037765 of chromosome 10 was found. A 485bp fragment of right flanking sequence was amplified using the primers that were designed according to the sequence of integration site on rice genome and right sequence of exogenous gene. The event-specific PCR detection method was developed based on the left and right flanking sequences, which produced 449bp and 485bp fragment respectively in genetically modified rice BPL9K-2, specifically. The event-specific PCR detection method, with high specificity and sensitivity, could detect the genetically modified ingredients in samples containing 0.1% genomic DNA of BPL9K-2. Based on the flanking sequence, a tri-primer PCR method was developed to identify its genotype of exogenous gene in segregation generation quickly and accurately. The above methods established in this research provide technical supports for the utilization and detection of genetically modified rice BPL9K-2.

Key words: Genetically modified rice    Flanking sequence    Event-specific detection    Genotyping
收稿日期: 2018-04-26 出版日期: 2018-12-06
ZTFLH:  Q812  
基金资助: * 转基因生物新品种培育科技重大专项资助项目(2016ZX08001003-001)
通讯作者: 肖国樱     E-mail: xiaoguoying@isa.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
崔帅
王作平
于江辉
肖国樱

引用本文:

崔帅,王作平,于江辉,肖国樱. 转基因水稻BPL9K-2事件特异性检测方法的建立 *[J]. 中国生物工程杂志, 2018, 38(11): 32-41.

Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2. China Biotechnology, 2018, 38(11): 32-41.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181105        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I11/32

引物名称
Primer
引物序列(5'-3')
Sequence
LAD1 ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA
LAD2 ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT
LAD3 ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA
LAD4 ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT
AC1 ACGATGGACTCCAGAG
LB-0a CAAGCACGGGAACTGGCATG
LB-1a CCTGCCCGTCACCGAGATTT
LB-2a GTGAGTAGTTCCCAGATAAG
LB-F GAAGGATTTGACGAGCGAGC
LB-R CTGGCATGACGTGGGTTTCT
RB-F CCAGCTCGAATTTCCCCGAT
RB-R AGCACAAATGTGGACGCTCA
表1  hiTAIL-PCR和事件特异性PCR检测的引物序列
图1  转基因水稻BPL9K-2左旁侧序列hiTAIL-PCR扩增结果
图2  BPL9K-2左旁侧序列及拼接位置特征
图3  BPL9K-2右旁侧序列及拼接位置特征
图4  转基因水稻BPL9K-2的T-DNA插入位置
图5  左右旁侧序列的事件特异性PCR检测
图6  左右旁侧序列的事件特异性检测方法检测限度测定
图7  左右旁侧序列的事件特异性检测 PCR扩增产物相对含量
图8  转基因水稻BPL9K-2基因型鉴定
[1] 王恒波, 陈平华, 郭晋隆 , 等. 转基因大豆GTS40-3-2转化事件特异性PCR检测. 基因组学与应用生物学, 2010,29(6):1177-1183.
Wang H B, Chen P H, Guo J L , et al. Specific PCR validation of transformation event for transgenic soybean GTS40-3-2. Genomics and Applied Biology, 2010,29(6):1177-1183.
[2] 翟志芳, 许文涛, 张南 , 等. 转基因玉米LY038转化事件的特异性检测. 农业生物技术学报, 2011,19(3):577-582.
doi: 10.3969/j.issn. 1674-7968.2011.03.026
Zhai Z F, Xu W T, Zhang N , et al. Event-specific transgenic detection of genetically modified maize LY038. Journal of Agricultural Biotechnology, 2011,19(3):577-582.
doi: 10.3969/j.issn. 1674-7968.2011.03.026
[3] 汪小福, 陈笑芸, 张小明 , 等. 转Cry1Ab基因水稻分子特征及其特异性PCR检测方法. 遗传, 2012,34(2):208-214.
doi: 10.3724/SP.J.1005.2012.00208
Wang X F, Chen X Y, Zhang X M , et al. Molecular characteristics and specific PCR detection of transgenic rice containing Cry1Ab. Hereditas, 2012,34(2):208-214.
doi: 10.3724/SP.J.1005.2012.00208
[4] 苏长青, 谢家建, 王奕海 , 等. 转基因水稻Bt汕优63的整合结构和品系特异性定量PCR方法. 农业生物技术学报, 2011,19(3):434-441.
Su C Q, Xie J J, Wang Y H , et al. Integrated construction and event-specific real-time PCR of transgenic rice Bt Shanyou 63. Journal of Agricultural Biotechnology, 2011,19(3):434-441.
[5] 蒋利平, 翁绿水, 肖国樱 . 转基因水稻B2A68事件特异性检测方法的建立. 杂交水稻, 2013,5:60-67.
Jiang L P, Wang L S, Xiao G Y . Establishment of an event-specific method to detect transgenic rice B2A68. Hybrid Rice, 2013,5:60-67.
[6] 魏岁军, 邓力华, 肖国樱 . 转基因水稻EB7001S事件特异性检测方法的建立. 农业生物技术学报, 2014,22(5):621-631.
doi: 10.3969/j.issn.1674-7968.2014.05.011
Wei S J, Deng L H, Xiao G Y . Establishment of an event-specific method to detect transgenic rice (Oryza sativa) EB7001S. Journal of Agricultural Biotechnology, 2014,22(5):621-631.
doi: 10.3969/j.issn.1674-7968.2014.05.011
[7] 郭超, 何行健, 邓力华 , 等. 转基因水稻BarKasalath-01事件特异性检测. 分子植物育种, 2017,15(11):4466-4475.
Guo C, He X J, Deng L H , et al. Event-specific detection of genetically modified rice BarKasalath-01. Molecular Plant Breeding, 2017,15(11):4466-4475.
[8] 杜春芳, 李朋波, 李润植 . 一种快速鉴定转基因植物纯合体的新方法. 生物技术通讯, 2004,15(6):585-587.
doi: 10.3969/j.issn.1009-0002.2004.06.013
Du C F, Li M B, Li R Z . A new method for the rapid identification of homozygous transgenic plants. Letters in Biotechnology, 2004,15(6):585-587.
doi: 10.3969/j.issn.1009-0002.2004.06.013
[9] 张斌, 何福林 . 三引物法鉴定转基因水稻U5纯合体. 分子植物育种, 2017,15(11):4476-4482.
Zhang B, He F L . Identification of transgenic rice U5 homozygote by three primers. Molecular Plant Breeding, 2017,15(11):4476-4482.
[10] 张焕春, 汪小福, 李玥莹 , 等. 转Cry1Ab水稻纯合体快速准确的PCR鉴定方法. 浙江农业学报, 2012,24(4):549-554.
doi: 10.3969/j.issn.1004-1524.2012.04.003
Zhang H C, Wang X F, Li Y Y , et al. A rapid and accurate PCR method for homozygous lines screening for genetically modified rice containing Cry1Ab. Acta Agriculturae Zhejiangensis, 2012,24(4):549-554.
doi: 10.3969/j.issn.1004-1524.2012.04.003
[11] Wang Z P, Deng L H, Weng L S , et al. Transgenic rice expressing a novel phytase-lactoferricin fusion gene to improve phosphorus availability and antibacterial activity. Journal of Integrative Agriculture, 2017,16(4):774-788.
doi: 10.1016/S2095-3119(16)61468-5
[12] Surzycki S . Preparation of genomic DNA from plant cells//Basic Techniques in Molecular Biology. Berlin:Springer Berlin Heidelberg, 2000: 57-78.
[13] Liu Y G, Chen Y . High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007,43(5):649.
doi: 10.2144/000112601 pmid: 18072594
[14] 许文涛, 白卫滨, 罗云波 , 等. 转基因产品检测技术研究进展. 农业生物技术学报, 2008,16(4):714-722.
doi: 10.3969/j.issn.1674-7968.2008.04.028
Xu W T, Bai W B, Luo Y B . Research progress in detection technique for genetically modified organisms. Journal of Agricultural Biotechnology, 2008,16(4):714-722.
doi: 10.3969/j.issn.1674-7968.2008.04.028
[15] 薛达元 . 转基因生物安全与管理. 北京: 科学出版社, 2009.
Xue D Y. Biosafety and regulation for genetically modified organisms. Beijing: Sciences Press, 2009.
[16] Gheysen G, Villarroel R, Montagu M V . Illegitimate recombination in plants: a model for T-DNA integration. Genes & Development, 1991,5(2):287-297.
[17] 杨琳, 付凤玲, 李晚忱 . 农杆菌介导转基因植物T-DNA的整合方式. 遗传, 2011,33(12):1327-1334.
doi: 10.3724/SP.J.1005.2011.01327
Yang L, Fu F L, Li W Z . T-DNA integration patterns in transgenic plants mediated by Agrobacterium tumefaciens. Hereditas, 2011,33(12):1327-1334.
doi: 10.3724/SP.J.1005.2011.01327
[18] Tzfira T, Li J, Lacroix B , et al. Agrobacterium T-DNA integration: molecules and models. Trends in Genetics, 2004,20(8):375-383.
doi: 10.1016/j.tig.2004.06.004 pmid: 15262410
[19] 王良超 . OsLSR:一个调控免疫反应和花发育的水稻基因. 浙江:浙江大学, 2016.
Wang L C . OsLSR: a rice gene that regulates immune response and floral differentiation. Zhejiang: Zhejiang University, 2016.
[20] 邓力华, 邓晓湘, 魏岁军 , 等. 抗虫抗除草剂转基因水稻B1C893的获得与鉴定. 杂交水稻, 2014,29(1):67-75.
Deng L H, Deng X X, Wei S J , et al. Development and identification of herbicide and insect resistant transgenic plant B1C893 in rice. Hybrid Rice, 2014,29(1):67-75.
[21] 魏岁军 . 转基因水稻EB7001S和BlC893的分子特征鉴定和相关性状评价. 北京:中国科学院大学, 2014.
Wei S J . Molecular identification and evaluation of transgenic rice EB7001S and BIC893. Beijing: University of Chinese Academy of Sciences, 2014.
[1] 杨烁, 郝育杰, 兰金苹, 韦汉福, 魏健, 荣瑞娟, 武鹏程, 刘国振, 尹长城, 李莉云. 转基因水稻中HPT蛋白质的检测及表达特征研究[J]. 中国生物工程杂志, 2015, 35(6): 61-67.
[2] 李亮, 臧超, 王晶, 隋志伟, 赵正宜, 董莲华. 转基因水稻克螟稻2号定量检测用质粒标准分子研制及不确定度评价[J]. 中国生物工程杂志, 2012, 32(10): 19-24.
[3] 苏金, J. Targolli, 吴乃虎, 吴瑞. 在转基因植物中实现外源基因最佳表达的途径[J]. 中国生物工程杂志, 1999, 19(4): 3-6.
[4] 金由辛. 真核生物tRNA基因的表达[J]. 中国生物工程杂志, 1994, 14(1): 45-48.