Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (11): 9-17    DOI: 10.13523/j.cb.20181102
研究报告     
miR-196a-5p对3T3-L1前脂肪细胞增殖和分化的影响效应 *
杨琼1,王灵慧2,辜浩2,堵晶晶2,刘进远3,张顺华2,朱砺2,***()
1. 成都农业科技职业学院 成都 611130
2. 四川农业大学动物科技学院 成都 611130
3. 四川省畜牧科学研究院 成都 610066
The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte
Qiong YANG1,Ling-hui WANG2,Hao GU2,Jing-jing DU2,Jin-yuan LIU3,Shun-hua ZHANG2,Li ZHU2,***()
1. Chengdu Agricultural College, Chengdu 611130, China
2. College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
3. Sichuan Animal Science Academy, Chengdu 610066,China
 全文: PDF(1636 KB)   HTML
摘要:

目的:探究miR-196a-5p对小鼠前体脂肪细胞增殖、分化的影响及其潜在的分子机制。方法:(1)构建小鼠肥胖模型,RT-PCR检测脂肪组织中miR-196a-5p表达量;(2)鸡尾酒法诱导3T3-L1前脂肪细胞分化,RT-PCR检测分化过程中miR-196a-5p的表达变化;(3)合成miR-196a-5p mimics和inhibitors转染3T3-L1细胞,以CCK8、EdU试剂盒检测miR-196a-5p对3T3-L1前脂肪细胞增殖的影响作用;(4)运用油红O染色、甘油三酯测定评估miR-196a-5p对3T3-L1细胞分化的影响;(5)RT-PCR检测miR-196a-5p对前脂肪细胞增殖、分化相关基因的影响;(6)结合前人文献,运用生物信息软件、萤光素酶报告系统对miR-196a-5p调控脂肪细胞分化的靶基因进行筛选和验证。结果:(1)miR-196a-5p在肥胖小鼠脂肪组织中高表达,在3T3-L1前脂肪细胞分化过程中先升高后下降;(2)与阴性对照组相比,mimics转染抑制了3T3-L1细胞增殖,inhibitors转染促进了3T3-L1细胞增殖;(3)与阴性对照组相比,mimics组积累了大量油红着色的脂滴,甘油三酯含量增多,而inhibitors组的脂滴少而小,甘油三酯含量相对降低;(4)与阴性对照组相比,mimics转染抑制了增殖标志基因Cyclin D1Cyclin ECDK2CDK4表达,促进了分化标志基因PPARγC/EBPαLPLaP2等的表达,inhibitors转染则表现出与mimics转染相反的作用;(5)miR-196a-5p可显著抑制野生型MAP4K3和MAPK1 3'UTR萤光素酶活性,而突变绑定位点可废除该抑制效应。结论:miR-196a-5p不仅可抑制3T3-L1前脂肪细胞增殖,还可促进其诱导分化、沉积脂滴;miR-196a-5p可能通过靶向调节MAP4K3和MAPK1来介导3T3-L1前脂肪细胞分化。

关键词: miR-196a-5p增殖分化MAP4K3MAPK1    
Abstract:

Objective:To investigate the effect of miR-196a-5p on proliferation and differentiation of mouse adipocyte, and explore its potential molecular mechanisms.Methods:① Utilizing RT-PCR, miR-196a-5p expression levels in adipose tissues from obese or normal mice were measured; ② The miR-196a-5p expression level during preadipocyte differentiation were measured by RT-PCR method, after 3T3-L1 cells were induced to differentiate by cocktail method; ③After miR-196a-5p mimics or inhibitors were transfected into 3T3-L1 cells, CCK8 and EdU detection were performed to evaluate the effect of miR-196a-5p on its proliferation; ④ Measuring the effect of miR-196a-5p on 3T3-L1 cells differentiation by Oil red O staining and triglyceride assay; ⑤ Detecting the effect of miR-196a-5p on the expression levels of 3T3-L1 cells proliferation and differentiation related genes; ⑥ Based on previous reports, using bioinformatics and luciferase reporter assays to identify targets that miR-196a-5p regulates preadipocyte differentiation.Result:①miR-196a-5p not only were highly expressed in adipose tissues of obese mice, but also were expressed dynamically during 3T3-L1 cells differentiation; ②When compared with negative control, mimics transfection inhibited 3T3-L1 cells proliferation, inhibitors transfection promoted its proliferation;③When compared with negative control, mimics or inhibitors transfection increased or decreased lipid accumulation and triglyceride content, respectively; ④When compared with negative control, mimics transfection repressed proliferation related markers (Cyclin D1,Cyclin E,CDK2 and CDK4) and promoted differentiation related markers (PPARγ,C/EBPα,LPL and aP2), however, inhibitors transfection had an opposite effect than that of mimics transfection; ⑤ The miR-196a-5p mimics significantly suppressed a luciferase reporter gene whose expression was regulated by the mouse MAP4K3 and MAPK1 mRNA 3'UTR, whereas mutation of the miR-196a-5p binding site in murine MAP4K3 and MAPK1 3'UTR completely abolished this response.Conclusions:miR-196a-5p might inhibit 3T3-L1 preadipocyte proliferation, and enhance its differentiation. The regulation of preadipocyte differentiation may be mediated by targeting MAP4K3 and MAPK1.

Key words: miR-196a-5p    Proliferation    Differentiation    MAP4K3    MAPK1
收稿日期: 2018-06-01 出版日期: 2018-12-06
ZTFLH:  Q591.5  
基金资助: * 四川省科技支撑计划资助项目(2016NZ0089);四川省科技支撑计划资助项目(16ZC2838);四川省科技支撑计划资助项目(2018KZ0057)
通讯作者: 朱砺     E-mail: zhuli7508@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨琼
王灵慧
辜浩
堵晶晶
刘进远
张顺华
朱砺

引用本文:

杨琼,王灵慧,辜浩,堵晶晶,刘进远,张顺华,朱砺. miR-196a-5p对3T3-L1前脂肪细胞增殖和分化的影响效应 *[J]. 中国生物工程杂志, 2018, 38(11): 9-17.

Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte. China Biotechnology, 2018, 38(11): 9-17.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181102        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I11/9

Gene Primer sequence (5'→3') TM(℃)
PPARγ F:CTCCAAGAATACCAAAGTGCGA 58.3
R:GCCTGATGCTTTATCCCCACA
Cyclin D1 F: GTTGCTGGAATTTTCGGGGT 60.0
R: AGCGTCCCTGTCTTCTTTCA
C/EBPα F:CAAGAACAGCAACGAGTACCG 58.3
R:GTCACTGGTCAACTCCAGCAC
ELOVL6 F:AAGCACGCTCTATCTCCTGTT 60.0
R:CTGCGTTGTATGATCCCATGAA
Cyclin E F: AGCCTCGGAAAATCAGACCA 58.3
R: TCCTGTGCCAAGTAGAACGT
FAS F:TATCAAGGAGGCCCATTTTGC 60.0
R:TGTTTCCACTTCTAAACCATGCT
aP2 F: CGATCCCAATGAGCAAGTGG 63.5
R: TGGGTCAAGCAACTCTGGAT
SREBP-1c F: GCAGCCACCATCTAGCCTG 57.5
R: CAGCAGTGAGTCTGCCTTGAT
SCD F: TTCTTGCGATACACTCTGGTGC 54.3
R: CGGGATTGAATGTTCTTGTCGT
LPL F:TGGCGTAGCAGGAAGTCTGA 60.0
R:TGCCTCCATTGGGATAAATGTC
CDK2 F: CCCTTCCCAAAGCCCTTTTC 63.5
R: GAAGAGGGGAAGAAGCTGGT
MAP4K3 F: AGAAATCCTTACACGGGCCA 58.2
R: CCAGCATCTCAAACATCCGG
CDK4 F: GTCAGTTTCTAAGCGGCCTG 61.0
R: CACGGGTGTTGCGTATGTAG
MAPK1 F: GAGGGGTTGGTGTGAGATCA 57.0
R: CCCATCCACCAGACAGCTTA
miR-196a-5p UAGGUAGUUUCAUGUUGUUGGG 61.0
U6 F:CTCGCTTCGGCAGCACA 61.0
R:AACGCTTCACGAATTTGCGT
β-actin F:TGGAATCCTGTGGCATC CATGAAAC 60.0
R:TAAAACGCAGCTCAG TAACAGTCCG
表1  RT-PCR引物序列
  
图2  miR-196a-5p在3T3-L1前脂肪细胞分化过程中的表达
  
  
图5  MAP4K3和MAPK1是miR-196a-5p的靶基因
[1] Sun B, Karin M . Obesity, inflammation and liver cancer. Journal of Hepatology, 2012,56(3):704-713.
doi: 10.1016/j.jhep.2011.09.020 pmid: 22120206
[2] Kahn S E, Hull R L, Utzschneider K M , et al. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2007,444(7121):840-846.
[3] Mayer J, Thomas D W . Regulation of food intake and obesity. Science, 1967,156(3773):328-337.
doi: 10.1126/science.156.3773.328 pmid: 4886532
[4] Li J . MicroRNAs: target recognition and regulatory functions. Cell, 2009,136(2) : 215-233.
doi: 10.1016/j.cell.2009.01.002
[5] Ambros V . The function of animal MicroRNAs. Nature, 2004,431(7006):350-355.
doi: 10.1038/nature02871
[6] Du T, Zamore P D . Microprimer: the biogenesis and function of microRNA. Development, 2005,132(21):4645-4652.
doi: 10.1242/dev.02070 pmid: 16224044
[7] Perri R, Nares S, Zhang S , et al. MicroRNA modulation in obesity and periodontitis. Journal of Dental Research, 2012,91(1):33-38.
doi: 10.1177/0022034511425045 pmid: 22043006
[8] Kajimoto K, Naraba H, Iwai N . MicroRNA and 3T3-L1 pre-adipocyte differentiation. Rna-a Publication of the Rna Society, 2006,12(9):1626-1632.
doi: 10.1261/rna.7228806 pmid: 16870994
[9] Berthold S, Kovacs P, Fasshauer M , et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One, 2009,4(3):e4699.
doi: 10.1371/journal.pone.0004699 pmid: 2649537
[10] Karbiener M, Fischer C, Nowitsch S , et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochemical and Biophysical Research Communications , 2009,390(2):247-251.
doi: 10.1016/j.bbrc.2009.09.098 pmid: 19800867
[11] Peng Y, Xiang H, Chen C , et al. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. International Journal of Biochemistry & Cell Biology, 2013,45(8):1585-1593.
doi: 10.1016/j.biocel.2013.04.029 pmid: 23665235
[12] Lv S, Ma M, Sun Y , et al. MicroRNA-129-5p inhibits 3T3-L1 preadipocyte proliferation by targeting G3BP. Animal Cells & Systems the Official Publication of the Zoological Society of Korea, 2017,21(4):269-277.
doi: 10.1080/19768354.2017.1337046
[13] Pan J, Li X, Wu W , et al. Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Letters, 2016,382(1):64-76.
doi: 10.1016/j.canlet.2016.08.015 pmid: 27591936
[14] Zhao X, Liu Y, Zheng J , et al. GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochimica Et Biophysica Acta. 2017,1864(10):1605-1617.
doi: 10.1016/j.bbamcr.2017.06.020 pmid: 28666797
[15] 赵华路, 姚南, 魏雪菊 , 等. miR-196a-5p抑制小鼠胚胎干细胞的自我更新. 基础医学临床, 2014,34(12):1645-1649.
Zhao H L, Yao N, Wei X J , et al. miR-196a-5p suppresses self-renewal of mouse embryonic stem cells. Basic & Clinical Medicine, 2014,34(12):1645-1649.
[16] Huang N, Wang J, Xie W , et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochemical & Biophysical Research Communications, 2015,457(1):37-42.
doi: 10.1016/j.bbrc.2014.12.055 pmid: 25529446
[17] 黃筠雅 . Map4k3基因对脂肪細胞分化的影响. 花莲:慈济大学生命科学研究所, 2012.
Huang J Y . The effect of Map4k3 on adipocytes differentiation. Hualian:Dissertation of Institute of Life Science, Tzu Chi University, 2012.
[18] Chen J F, Mandel E M, Thomson J M , et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006,38(2):228-233.
doi: 10.1038/ng1725 pmid: 16380711
[19] Taylor D D, Gercel-Taylor C . MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 2008,110(1):13-21.
doi: 10.1016/j.ygyno.2008.04.033 pmid: 18589210
[20] Delaloy C, Liu L, Lee J A , et al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell, 2010,6(4):323-335.
doi: 10.1016/j.stem.2010.02.015 pmid: 20362537
[21] Gaudet A D, Fonken L K, Gushchina L V , et al. miR-155 deletion in female mice prevents diet-induced obesity. Scientific Reports, 2016,6(22862):1-10.
doi: 10.1038/s41598-016-0001-8
[22] Du J, Cheng X, Shen L , et al. Methylation of miR-145a-5p promoter mediates adipocytes differentiation. Biochemical and Biophysical Research Communications, 2016,475(1):140-148.
doi: 10.1016/j.bbrc.2016.05.057 pmid: 27179777
[23] Tan Z, Du J, Shen L , et al. miR-199a-3p affects adipocytes differentiation and fatty acid composition through targeting SCD. Biochemical and Biophysical Research Communications, 2017,492(1):82-88.
doi: 10.1016/j.bbrc.2017.08.030 pmid: 28803985
[24] Du J, Xu Y, Zhang P . et al. MicroRNA-125a-5p affects adipocytes proliferation, differentiation and fattyacid composition of porcine intramuscular fat. International Journal of Molecular Sciences, 2018,19(2):1-3.
doi: 10.3390/ijms19020501 pmid: 29414921
[25] Baldin V, Lukas J, Marcote M J , et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes & Development. 1993,7(5):812-821.
[26] Stacey D W . Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Current Opinion in Cell Biology. 2003,15(2):158-163.
doi: 10.1016/S0955-0674(03)00008-5 pmid: 12648671
[27] Koff A, Dulic V, Lees E , et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle : Science 257, 1689-1694. Trends in Cell Biology, 1992,2(12):362-362.
doi: 10.1126/science.1388288 pmid: 1388288
[28] Meyer C A, Jacobs H W, Lehner C F . Cyclin D-cdk4 is not a master regulator of cell multiplication in Drosophila embryos. Current Biology, 2002,12(8):661-666.
doi: 10.1016/S0960-9822(02)00770-4 pmid: 11967154
[29] Siersb?k R, Nielsen R, Mandrup S . PPARγ in adipocyte differentiation and metabolism - novel insights from genome-wide studies. Febs Letters, 2010,584(15):3242-3249.
doi: 10.1016/j.febslet.2010.06.010
[30] Choi S K, Park S, Jang S , et al. Cascade regulation of PPARγ(2) and C/EBPα signaling pathways by celastrol impairs adipocyte differentiation and stimulates lipolysis in 3T3-L1 adipocytes. Metabolism Clinical & Experimental, 2016,65(5):646-654.
[31] Zhou J, Guo F, Wang G , et al. miR-20a regulates adipocyte differentiation by targeting lysine-specific demethylase 6b and transforming growth factor-β signaling. International Journal of Obesity , 2015,39(8):1282-1291.
doi: 10.1038/ijo.2015.43 pmid: 25817070
[32] Rosen E D, Hsu C H, Wang X , et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes & Development, 2002,16(1):22-26.
[33] Bushati N , Cohen S M. microRNA functions. Annual Review of Cell & Developmental Biology, 2007,23(23):175-205.
[34] Bost F, Aouadi M, Caron L , et al. The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 2005,87(1):51-56.
doi: 10.1016/j.biochi.2004.10.018 pmid: 15733737
[35] Machinalquélin F, Dieudonné M N, Leneveu M C , et al. Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. American Journal Physiol Cell Physiol, 2002,282(4):c853-c863.
doi: 10.1152/ajpcell.00331.2001 pmid: 11880274
[1] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[2] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[3] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[4] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[5] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[6] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[7] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[8] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[9] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[10] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[11] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[12] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[13] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[14] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[15] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.