Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (10): 55-63    DOI: 10.13523/j.cb.20181007
技术与方法     
利用GAP启动子在毕赤酵母中组成型表达人鹅型溶菌酶2 *
黄鹏1,**,***(),阎丽萍2,**,张宁3,石金磊4
1 上海健康医学院临床医学院 上海 201318
2 青岛大学附属中心医院 青岛 266042
3 上海健康医学院基础医学院 上海 201318
4 上海科技大学生命科学与技术学院 上海 201210
Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter
Peng HUANG1,**,***(),Li-ping YAN2,**,Ning ZHANG3,Jin-lei SHI4
1 College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
2 Clinical Laboratory, Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
3 College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
4 School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
 全文: PDF(1004 KB)   HTML
摘要:

利用甘油醛三磷酸脱氢酶(glyceraldehydes-3-phosphatedehydrogenase,GAP)启动子在毕赤酵母中表达人鹅型溶菌酶2(human goose-type lysozyme 2,hLysG2),并在小试规模建立一套有效的重组hLysG2(recombinant hLysG2,rhLysG2)生产工艺流程。根据毕赤酵母密码子偏爱性设计并人工合成hLysG2基因,将其连接至pGAPZαA 质粒中,构建重组表达质粒pGAPZαA-hLysG2。将重组表达载体线性化后电转化毕赤酵母GS115感受态细胞,通过Zeocin抗性筛选获取高拷贝重组菌株,并在5L生物反应器中进行发酵培养。发酵60h后发酵液上清酶活性达到最高, 发酵液上清经SDS-PAGE及Western blot检测证实rhLysG2得到表达。与诱导型表达相比,组成型表达发酵时间缩短了48h,上清中rhLysG2总活性提高了23.8%;使用甲壳素亲和层析和分子筛层析对rhLysG2进行纯化后,每升发酵液上清可纯化到187.4mg重组蛋白,纯化产物纯度达99.0%以上;浊度测定法分析显示,在pH 5.6、30℃和0.1mol/L Na +的条件下,rhLysG2可达到最大酶活性13 500U/mg。利用GAP启动子在毕赤酵母中成功表达了高纯度和高活性的rhLysG2,避免了甲醇的使用,缩短了发酵时间,提高了蛋白产量,为将rhLysG2开发为新型抗耐药菌药物奠定了基础。

关键词: 人鹅型溶菌酶2毕赤酵母GAP启动子组成型表达杀菌活性    
Abstract:

This study aimed to achieve the constitutive expression of human goose-type lysozyme 2 (hLysG2) in Pichia pastoris using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter and to establish an efficient strategy for the production of recombinant hLysG2 (rhLysG2) on a bench scale. The hLysG2 gene was synthesized according to the codon usage preference of P. pastoris and cloned into pGAPZαA vector. The resulting pGAPZαA-hLysG2 plasmid was linearized and transformed into competent P. pastoris GS115, followed by Geneticin screening. The transformants with higher Geneticin resistance were selected to investigate the constitutive expression of rhLysG2 in P. pastoris. The lytic activity of rhLysG2 in the fermentation broth reached its peak after 60h of cultivation. SDS-PAGE and Western blot analysis showed that rhLysG2 was successfully secreted into the fermentation broth. There were a 23.8% increase in the total lytic activity and a 48h reduction in the cultivation time in comparison with those of the P. pastoris strain integrated with the pPIC9K-hLysG2 plasmid. Using chitin affinity and size-exclusion chromatography, rhLysG2 was purified with a yield of 187.4mg/L of fermentation supernatant, above 99.9% purity and a specific activity of 13 500U/mg under the condition of pH 5.6, 0.1mol/L of Na +, 30℃. In conclusion, rhLysG2 was expressed at high level in P. pastoris by codon optimization and had in vitro bactericidal activity against some pathogenic bacteria, which has laid a solid foundation for its possible future pharmaceutical applications.

Key words: Human goose-type lysozyme 2    Pichia pastoris    GAP promoter    Constitutive expression    Bactericidal activity
收稿日期: 2018-04-16 出版日期: 2018-11-09
ZTFLH:  R392-33R392.11  
基金资助: * 上海市卫生计生委科研课题(201740161);上海市自然科学基金(15ZR1421800)
通讯作者: 黄鹏,阎丽萍     E-mail: huangp_15@sumhs.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄鹏
阎丽萍
张宁
石金磊

引用本文:

黄鹏,阎丽萍,张宁,石金磊. 利用GAP启动子在毕赤酵母中组成型表达人鹅型溶菌酶2 *[J]. 中国生物工程杂志, 2018, 38(10): 55-63.

Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter. China Biotechnology, 2018, 38(10): 55-63.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181007        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I10/55

Name Primer sequence (5'-3')
pGAP Forward GTCCCTATTTCAATCAATTGAA
3'-AOX1 GCAAATGGCATTCTGACATCC
hLysG2 Forward TCTTACCCATTTAGTCATTC
hLysG2 Reverse TTAGAAGCTTTGTCTTTTAT
表1  本研究所用引物
图1  目的基因扩增及重组质粒酶切鉴定
图2  目的基因扩增及重组质粒酶切鉴定
图3  阳性重组毕赤酵母菌株PCR鉴定
图4  发酵液上清活性增长曲线
图5  发酵液上清的SDS-PAGE
图6  甲壳素亲和层析洗脱曲线
图7  rhLysG2纯化蛋白SDS-PAGE (上)与Western blot分析 (下)
图8  纯化rhLysG2的HPLC分析
Step Total protein(mg/L) Total lytic activity (× 106U/L) Activity recovery(%)
Supernatant 428 ± 21 3.84 ± 0.28 100.00
After chitin affinity chromatography 301 ± 18 2.70 ± 0.23 70.25
After size-exclusion chromatography 199 ± 17 1.78 ± 0.20 46.38
After centrifugal filtration 184 ± 15 1.64 ± 0.18 42.74
表2  rhLysG2纯化过程收率分析
图9  pH、离子浓度和温度对rhLysG2活性和稳定性的影响
Ion Na+ Co+ Ca2+ Zn2+ Cu2+ Hg2+ Mn2+ Fe3+
Relative activity(%) 100 31.4 68.5 56.8 0 83.0 78.2 42.3
表3  金属离子对rhLysG2活性的影响
图10  rhLysG2杀菌活性分析(n=3)
[1] Irwin D M . Evolution of the vertebrate goose-type lysozyme gene family. BMC Evolutionary Biology, 2014,14(1):188-202.
doi: 10.1186/s12862-014-0188-x pmid: 4243810
[2] Weaver L H, Grutter M G, Remington S J , et al. Comparison of goose-type, chicken-type, and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structure during evolution. Journal of Molecular Evolution, 1985,21(2):97-111.
doi: 10.1007/BF02100084 pmid: 6442995
[3] Prager E M . Adaptive evolution of lysozyme: changes in amino acid sequence, regulation of expression and gene number. EXS, 1996,75:323-345.
doi: 10.1007/978-3-0348-9225-4_17 pmid: 8765307
[4] Canfield R E, Mcmurry S . Purification and characterization of a lysozyme from goose egg white. Biochemical and Biophysical Research Communications, 1967,26(1):38-42.
doi: 10.1016/0006-291X(67)90249-5 pmid: 6030253
[5] Ko J, Wan Q, Bathige S D , et al. Molecular characterization, transcriptional profiling, and antibacterial potential of G-type lysozyme from seahorse (Hippocampus abdominalis). Fish & Shellfish Immunology, 2016,58:622-630.
doi: 10.1016/j.fsi.2016.10.014 pmid: 27732899
[6] Liu Q N, Xin Z Z, Zhang D Z , et al. Molecular identification and expression analysis of a goose-type lysozyme (LysG) gene in yellow catfish Pelteobagrus fulvidraco. Fish & Shellfish Immunology, 2016,58:423-428.
doi: 10.1016/j.fsi.2016.09.034 pmid: 27645907
[7] Gao C, Fu Q, Zhou S , et al. The mucosal expression signatures of g-type lysozyme in turbot (Scophthalmus maximus) following bacterial challenge. Fish & Shellfish Immunology, 2016,54:612-619.
doi: 10.1016/j.fsi.2016.05.015 pmid: 27189917
[8] Wei S, Huang Y, Huang X , et al. Molecular cloning and characterization of a new G-type lysozyme gene (Ec-lysG) in orange-spotted grouper, Epinephelus coioides. Developmental and Comparative Immunology, 2014,46(2):401-412.
doi: 10.1016/j.dci.2014.05.006
[9] Buonocore F, Randelli E, Trisolino P , et al. Molecular characterization, gene structure and antibacterial activity of a g-type lysozyme from the European sea bass (Dicentrarchus labrax L.). Molecular Immunology, 2014,62(1):10-18.
[10] Wang R, Feng J, Li C , et al. Four lysozymes (one c-type and three g-type) in catfish are drastically but differentially induced after bacterial infection. Fish & Shellfish Immunology, 2013,35(1):136-145.
doi: 10.1016/j.fsi.2013.04.014 pmid: 23639933
[11] Guo Y, He H . Identification and characterization of a goose-type lysozyme from sewage snail Physa acuta. Fish & Shellfish Immunology, 2014,39(2):321-325.
doi: 10.1016/j.fsi.2014.05.029 pmid: 24882016
[12] Huang P, Li W S, Xie J , et al. Characterization and expression of hLysG2, a basic goose- type lysozyme from the human eye and testis. Molecular Immunology, 2011,48(4):524-531.
doi: 10.1016/j.molimm.2010.10.008 pmid: 21093056
[13] Irwin D M, Gong Z . Molecular evolution of vertebrate goose-type lysozyme genes. Journal of Molecular Evolution, 2003,56(2):234-242.
doi: 10.1007/s00239-002-2396-z
[14] 黄鹏, 杨智昉, 谢君 , 等. 人g2型溶菌酶的多克隆抗体制备及其在睾丸中的表达分析. 免疫学杂志, 2016,32(10):842-847.
Huang P, Yang Z F, Xie J , et al. Preparation of polyclonal antibody of human goose-type lysozyme 2 and its expression in human testis. Immunology Journal, 2016,32(10):842-847.
[15] 黄鹏, 杨智昉, 鲍建瑛 , 等. 人精浆中g2型溶菌酶的纯化及其酶学活性分析. 细胞与分子免疫学杂志, 2017,33(3):320-325.
Huang P, Yang Z F, Bao J Y , et al. Purification of human goose-type lysozyme 2 (hLysG2) from human seminal plasma and analysis of its enzymatic properties. Chinese Journal of Cellular and Molecular Immunology, 2017,33(3):320-325.
[16] Stahlmann R . Antibiotics for treatment of infections by methicillin-resistant Staphylococcus aureus (MRSA). Pneumologie, 2014,68(10):676-684.
doi: 10.1055/s-00000059
[17] Holmes N E, Howden B P . What’s new in the treatment of serious MRSA infection? Current Opinion in Infectious Diseases, 2014,27(6):471-478.
doi: 10.1097/QCO.0000000000000101 pmid: 25211361
[18] Daly R, Hearn M T . Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition, 2005,18(2):119-138.
doi: 10.1109/4.953490 pmid: 15565717
[19] Macauley-Patrick S, Fazenda M L, Mcneil B , et al. Heterologous protein production using the Pichia pastoris expression system. Yeast, 2005,22(4):249-270.
doi: 10.1002/yea.1208 pmid: 15704221
[20] Jahic M, Veide A, Charoenrat T , et al. Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnology Progress, 2006,22(6):1465-1473.
doi: 10.1002/btpr.v22:6
[21] Ahmad M, Hirz M, Pichler H , et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 2014,98(12):5301-5317.
doi: 10.1007/s00253-014-5732-5 pmid: 4047484
[22] Romanose M A, Scorer C A, Clare J J . Foreign gene expression in yeast: a review. Yeast, 1992,8(6):423-488.
doi: 10.1002/yea.320080602 pmid: 1502852
[23] Waterham H R, Digan M E, Koutz P J , et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 1997,186(1):37-44.
doi: 10.1016/S0378-1119(96)00675-0 pmid: 9047342
[24] Zhang A L, Luo J X, Zhang T Y , et al. Constitutive expression of human angiostatin in Pichia pastoris using the GAP promoter. Acta Genetica Sinica, 2004,31(6):552-557.
doi: 10.1007/BF02873086 pmid: 15490871
[25] Menéndez C, Martínez D, Trujillo L E , et al. Constitutive high-level expression of a codon-optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Applied Microbiology and Biotechnology, 2013,97(3):1201-1212.
doi: 10.1007/s00253-012-4270-2
[26] 钱凯, 张晶晶, 吴素平 , 等. 利用GAP 启动子在毕赤酵母中表达与纯化GLP-1类似物. 中国生物工程杂志, 2015,35(5):66-73.
doi: 10.13523/j.cb.20150510
Qian K, Zhang J J, Wu S P , et al. Constituted expression and purification of glucagon-like peptide-1 analogue in Pichia pastoris using GAP promoter. China Biotechnology, 2015,35(5):66-73.
doi: 10.13523/j.cb.20150510
[27] 黄鹏, 李文姝, 谢君 , 等. 甲壳素亲和层析在人g2型溶菌酶制备中的应用. 免疫学杂志, 2015,31(5):430-435.
Huang P, Li W S, Xie J , et al. Application of chitin affinity chromatography in purification of recombinant hLysG2. Immunology Journal, 2015,31(5):430-435.
[28] Klockars M, Reitamo S . Tissue distribution of lysozyme in man. Journal of Histochemistry & Cytochemistry, 1975,23(12):932-940.
[29] Mason D Y, Taylor C R . The distribution of muramidase (lysozyme) in human tissues. Journal of Clinical Pathology, 1975,28(2):124-132.
doi: 10.1136/jcp.28.2.124 pmid: 475611
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[5] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[6] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[7] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[8] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[11] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[12] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[13] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.
[14] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[15] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.