Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (10): 1-7    DOI: 10.13523/j.cb.20181001
研究报告     
S100A9参与乙型肝炎病毒X蛋白介导的HepG2细胞增殖与迁移 *
张秀瑜1,王玎1,杜燕娥1,武睿2,段亮1,**()
1 重庆医科大学附属第二医院 重庆 400016
2 重庆医科大学附属第一医院 重庆 400016
S100A9 is Involved in Hepatitis B Virus X-induced Proliferation and Migration of Human Hepatocellular Carcinoma Cell HepG2
Xiu-yu ZHANG1,Ding WANG1,Yan-e DU1,Rui WU2,Liang DUAN1,**()
1 The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
2 The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
 全文: PDF(1365 KB)   HTML
摘要:

目的: 探讨S100A9在乙型肝炎病毒X(HBx)介导的HepG2细胞增殖及迁移中的作用。方法: 用表达HBx蛋白的重组腺病毒AdHBx感染HepG2细胞后,用CCK-8实验检测细胞增殖能力及划痕愈合实验检测细胞迁移能力;在HepG2/AdHBx细胞中转染S100A9-siRNA及其对照siRNA后,检测HepG2细胞增殖及迁移能力;在HepG2/AdHBx和对照组HepG2/AdGFP细胞中,采用Real-time PCR及Western Blot检测S100A9基因及蛋白的表达情况;在HepG2/AdHBx细胞中,加入不同剂量的NF-κB抑制剂BAY11-7082后,检测各组中S100A9的基因及蛋白表达情况。结果: HBx促进HepG2细胞的增殖与迁移;S100A9-siRNA抑制S100A9的表达后,HBx促进HepG2细胞的增殖与迁移的作用降低,HBx介导的HepG2细胞的增殖与迁移部分依赖于S100A9;S100A9基因及蛋白表达在HepG2/AdHBx中较对照组HepG2/AdGFP显著升高,HBx可致S100A9表达增加;抑制NF-κB转录活性后,AdHBx+BAY11-7082组S100A9基因及蛋白表达较对照组显著降低,阻断NF-κB转录活性可部分抑制HBx调控的S100A9表达。结论: HBx可调控S100A9的表达且与NF-κB活化有关, S100A9参与 HBx介导的HepG2细胞的增殖与迁移。

关键词: S100A9HepG2细胞乙型肝炎病毒X蛋白NF-κB    
Abstract:

Objective: To investigate the effect of S100A9 on hepatocellular carcinoma cell HepG2 and the relevant mechanism.Methods: CCK-8 assay and cell migration assay were used to study HepG2 growth and migration mediated by Hepatitis B virus X (HBx) respectively. Transfected S100A9-siRNA into cells for silencing S100A9 expression, then the growth and migration of HepG2 infected with AdHBx were analyzed. Real-time PCR and Western blot were used to detect S100A9 mRNA levels and expression in HepG2 cells infected with AdHBx or AdGFP. After the treatment with or without NF-κB inhibitor BAY11-7082, S100A9 mRNA levels and expression in AdHBx-infected HepG2 cells were detected again.Result: HBx enhances the growth and migration of HepG2 cells. Silencing S100A9 expression partially blocked HBx-induced growth and migration of HepG2 cells. The mRNA level and protein expression of S100A9 were significantly higher in HepG2 cells infected with AdHBx than with AdGFP, and that suggests S100A9 expression can be modulated by HBx. NF-κB inhibitor treatment efficiently suppressed the increase of S100A9 levels caused by HBx.Conclusion: Expression of S100A9 is regulated by HBx-mediated NF-κB activation, and S100A9 plays an important role in HBx-induced growth and migration of hepatocellular carcinoma cell HepG2.

Key words: S100A9    HepG2 cells    Hepatitis B virus X    NF-kappa B
收稿日期: 2018-06-19 出版日期: 2018-11-09
ZTFLH:  R73  
基金资助: * 国家自然科学基金(81601837)
通讯作者: 段亮     E-mail: dl13640529186@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张秀瑜
王玎
杜燕娥
武睿
段亮

引用本文:

张秀瑜,王玎,杜燕娥,武睿,段亮. S100A9参与乙型肝炎病毒X蛋白介导的HepG2细胞增殖与迁移 *[J]. 中国生物工程杂志, 2018, 38(10): 1-7.

Xiu-yu ZHANG,Ding WANG,Yan-e DU,Rui WU,Liang DUAN. S100A9 is Involved in Hepatitis B Virus X-induced Proliferation and Migration of Human Hepatocellular Carcinoma Cell HepG2. China Biotechnology, 2018, 38(10): 1-7.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181001        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I10/1

图1  稳定表达HBx蛋白的HepG2细胞模型的鉴定
图2  HBx对HepG2细胞增殖(a)与迁移(b)(c)的作用
图3  S100A9-siRNA 降低HBx对HepG2细胞增殖(a)与迁移(b)(c)的促进作用
图4  S100A9在HepG2/ AdHBx细胞与HepG2/ AdGFP细胞中的表达
图5  阻断NF-κB转录活性可抑制S100A9的表达
[1] Zhu R X, Seto W K, Lai C L , et al. Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut Liver, 2016,10(3):332-339.
doi: 10.5009/gnl15257 pmid: 27114433
[2] Levrero M, Zucman-Rossi J . Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol, 2016,64(1 Suppl):S84-S101.
doi: 10.1016/j.jhep.2016.02.021
[3] Seeger C, Mason W S . Molecular biology of hepatitis B virus infection. Virology, 2015, 479-480:672-686.
doi: 10.1016/j.virol.2015.02.031 pmid: 25759099
[4] Zhang X D, Wang Y, Ye L H . Hepatitis B virus X protein accelerates the development of hepatoma. Cancer Biol Med, 2014,11(3):182-190.
doi: 10.7497/j.issn.2095-3941.2014.03.004 pmid: 4197427
[5] Sung W K, Zheng H, Li S , et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet, 2012,44(7):765-769.
doi: 10.1038/ng.2295 pmid: 22634754
[6] Bianchi M E . DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol, 2007,81(1):1-5.
doi: 10.1189/jlb.0306164 pmid: 17032697
[7] Chen H, Xu C, Jin Q , et al. S100 protein family in human cancer. AM J Cancer Res, 2014,4(2):89-115.
doi: 10.3901/JME.2014.16.089 pmid: 3960449
[8] Markowitz J , Iii W E C. Review of S100A9 biology and its role in cancer. Biochim Biophys Acta, 2013,1835(1):100-109.
doi: 10.1016/j.bbcan.2012.10.003 pmid: 3670606
[9] Motavaf M, Safari S, Saffari J M , et al. Hepatitis B virus-induced hepatocellular carcinoma: the role of the virus x protein. Acta Virol, 2013,57(4):389-396.
doi: 10.4149/av_2013_04_389 pmid: 24294951
[10] Zhang T, Zhang J, You X , et al. Hepatitis B virus X protein modulates oncogene yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology, 2012,56(6):2051-2059.
doi: 10.1002/hep.25899 pmid: 22707013
[11] Chen Z, Tang J, Cai X , et al. HBx mutations promote hepatoma cell migration through the Wnt/β-catenin signaling pathway. Cancer Sci, 2016,107(10):1380-1389.
doi: 10.1111/cas.13014 pmid: 27420729
[12] Chen B, Miller A L, Rebelatto M , et al. S100A9 induced inflammatory responses are mediated by distinct damage associated molecular patterns (DAMP) receptors in vitro and in vivo. PLoS One, 2015,10(2):e0115828.
doi: 10.1371/journal.pone.0115828 pmid: 25706559
[13] van Lent P L, Grevers L, Blom A B , et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis, 2008,67(12):1750-1758.
doi: 10.1136/ard.2007.077800
[14] Lee M J, Lee J K, Choi J W , et al. Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis. PLoS One, 2012,7(9):e38801.
doi: 10.1371/journal.pone.0038801 pmid: 22962574
[15] Tsai S Y, Seqovia J A, Chang T H , et al. DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza a virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PloS Pathog, 2014,10(1):e1003848.
doi: 10.1371/journal.ppat.1003848 pmid: 3879357
[16] Baines K J, Hsu A C, Tooze M , et al. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD. Respir Res, 2013,14(1):15.
doi: 10.1186/1465-9921-14-15 pmid: 23384071
[17] Gebhardt C, Nemeth J, Angel P , et al. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol, 2006,72(11):1622-1631.
doi: 10.1016/j.bcp.2006.05.017 pmid: 16846592
[18] Srikrishna G . S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun, 2012,4(1):31-40.
doi: 10.1159/000330095
[19] Wu R, Duan L, Cui F , et al. S100A9 promotes human hepatocellular carcinoma cell growth and invasion through RAGE-mediated ERK1 /2 and p38 MAPK pathways. Exp Cell Res, 2015,334(2):228-238.
doi: 10.1016/j.yexcr.2015.04.008 pmid: 25907296
[20] Hermani A, Hess J, De Servi B , et al. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res, 2005,11(14):5146-5152.
doi: 10.1158/1078-0432.CCR-05-0352 pmid: 16033829
[21] Kim H J, Kang H J, Lee H , et al. Identification of S100A8 and S100A9 as serological markers for colorectal cancer. J Proteome Res, 2009,8(3):1368-1379.
doi: 10.1021/pr8007573 pmid: 19186948
[22] Nemeth J, Stein I, Haag D , et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver arcinogenesis. Hepatology, 2009,50(4):1251-1262.
doi: 10.1002/hep.23099
[1] 户丽君,段亮,黄逸云,林璐,黄茂,陈露,彭棋,胡琴,张彦,周兰. S100A9参与介导具核梭杆菌促结肠癌细胞的增殖与迁移的作用 *[J]. 中国生物工程杂志, 2020, 40(1-2): 84-91.
[2] 武睿, 周兰, 崔鲂. S100A9促进肝癌细胞HepG2的存活与侵袭依赖于RAGE[J]. 中国生物工程杂志, 2015, 35(5): 8-14.
[3] 梁丽珠, 孙佳楠, 李恺, 刘明伟, 丁琛, 秦钧. 蛋白质组分析油酸对HepG2细胞转录因子DNA结合活性的影响[J]. 中国生物工程杂志, 2015, 35(5): 22-31.
[4] 付怀秀, 于翔, 康宏向, 梁洁, 陈鹏, 沈本剑, 金义光, 熊力, 毛建平. Photosan脂质立方液晶纳米光敏剂的制备及光动力杀伤效应研究[J]. 中国生物工程杂志, 2015, 35(3): 35-41.
[5] 宋明丽, 林雨, 罗南书, 冯全义, 黄岂平, 张晃猷, 张义国, 吴泽志. PDMS微柱阵列型拓扑结构基底增强HepG2细胞TRPV1、TRPV4通道表达及功能响应性[J]. 中国生物工程杂志, 2015, 35(10): 1-12.
[6] 朱小三, 戴益琛, 陈章兴, 谢军培, 曾伟, 林园园, 赵本华. ECHS1经线粒体途径调控HepG2细胞凋亡[J]. 中国生物工程杂志, 2013, 33(8): 11-16.
[7] 成志勇, 梁文同, 王素云, 颜晓燕, 李华, 王宝艳, 田赫, 魏玉涛, 芦希. PTEN/NF-κB/Caspase信号通路对K562/ADM细胞阿霉素耐药逆转机制的研究[J]. 中国生物工程杂志, 2013, 33(3): 54-60.
[8] 张阳德, 段菁华, 陈玉祥, 廖明媚, 黄伯云, 赵劲风. 一种新型的阳离子型姜黄素纳米粒对肝细胞癌增殖的影响[J]. 中国生物工程杂志, 2010, 30(12): 30-35.
[9] 苏广伟,孙进,施用晖,乐国伟. 乳酸杆菌肽聚糖对小鼠机体免疫功能的调节作用[J]. 中国生物工程杂志, 2006, 26(08): 98-102.