Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (8): 19-25    DOI: 10.13523/j.cb.20180803
研究报告     
X射线衍射晶体法解析脱卤酶DehDIV-R结构的研究 *
童超迪,吴坚平,杨立荣,徐刚()
浙江大学化学工程与生物工程学院 杭州 310027
Crystal Structural Analysis of DehDIV-R by X-ray Crystallography
Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU()
Zhejiang University,Department of Chemical and Biological Engineering,Hangzhou 310027,China
 全文: PDF(1166 KB)   HTML
摘要:

R-2-卤代酸脱卤酶能立体选择性水解R-2-卤代酸。解析酶的单晶结构对提高酶的选择性和活性提供了直接的结构指导,是目前酶结构领域研究的前沿。以实验室前期得到的来自假单胞菌ZJU26的R-2-氯丙酸脱卤酶(DehDIV-R)为研究对象,采用X射线衍射晶体法进行结构解析。采用ppSUMO载体融合表达DehDIV-R蛋白,依次通过Ni-NTA亲和层析、透析酶切、二次Ni-NTA亲和层析以及凝胶过滤层析纯化得到单一条带,且均一性好的蛋白。接着对结晶条件进行初筛与优化,得到的最佳结晶条件为0.1mol/L HEPES pH 7,12% PEG 6 000,0.2mol/L MgCl2 ,8mmol/L CHAPS。晶体在上海同步辐射光源BL18U1线站上收集衍射数据,采用分子置换法成功解析获得了分辨率为2.35?的DehDIV-R的晶体结构。Ramachandran图表明98.02%的氨基酸位于最适区,证明了该结构的合理性。DehDIV-R的纯化、结晶以及结构解析为进一步深入了解其结构和功能奠定了基础。

关键词: R-2-卤代酸脱卤酶纯化结晶X射线衍射    
Abstract:

R-2-haloacid dehalogenase can selectively hydrolyze R-2-haloacid and have important applications in the synthesis of chiral compounds.The analysis of the crystal structure provides a direct structural guide to improve the selectivity and activity of the enzyme,which is the frontier in the field of enzymatic structure research.The crystal structure of R-2-chlorpropionic acid dehalogenase (DehDIV-R) from Pseudomonas ZJU26 was studied.DehDIV-R was expressed in Escherichia coli BL21(DE3) using ppSUMO as vectors,and purified by Ni-NTA affinity chromatography,ULPI digestion,second Ni-NTA affinity chromatography and gel filtration chromatography.High-quality crystals were obtained in optimal conditions (0.1 mol/L HEPES pH 7,12% PEG 6000,0.2 mol/L MgCl2,8 mmol/L CHAPS).The diffraction data of crystals were collected at BL18U1 beamline of Shanghai Synchrotron Radiation Facility(SSRF).The crystal structure of DehDIV-R with a resolution of 2.35? was successfully resolved by Molecular Replacement(MR).The Ramachandran plot shows that 98.02% of the amino acids are in the optimum region,indicating the rationality of the structure.The purification,crystallization and structural analysis of the DehDIV-R have laid a foundation for further understanding the relationship between structure and function.

Key words: R-2-haloacid dehalogenase    Purification    Crystallization    X-ray diffraction
收稿日期: 2018-03-09 出版日期: 2018-09-11
ZTFLH:  Q814  
基金资助: 国家自然科学基金面上项目(21076187);国家973计划(2011CB710800)
通讯作者: 徐刚     E-mail: xugang_1030@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
童超迪
吴坚平
杨立荣
徐刚

引用本文:

童超迪,吴坚平,杨立荣,徐刚. X射线衍射晶体法解析脱卤酶DehDIV-R结构的研究 *[J]. 中国生物工程杂志, 2018, 38(8): 19-25.

Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography. China Biotechnology, 2018, 38(8): 19-25.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180803        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I8/19

图1  第一次Ni-NTA亲和层析纯化DehDIV-R的SDS-PAGE分析图
图2  经ULP1酶切后第二次Ni-NTA亲和层析纯化DehDIV-R的SDS-PAGE分析图
图3  DehDIV-R凝胶过滤层析图谱
图4  凝胶过滤层析纯化DehDIV-R的SDS-PAGE分析图
图5  初筛得到的DehDIV-R晶体
图6  最优化条件下的DehDIV-R晶体
Factor Data
Space group P31
Cell dimensions
a,b,c(?) 126.279,126.279,93.483
α,β,γ (°) 90,90,120
Resolution range(?)1) 50-2.35(2.39-2.35)
No. of observed reflections 340674
No. of unique reflections 69225
Completeness (%)1) 100(100)
Rmerge1)2) 0.095(0.790)
Average I/σ(I)1) 16.6(2.5)
Redundancy1) 4.9(4.8)
表1  脱卤酶DehDIV-R晶体衍射数据统计结果
图7  DehDIV-R X射线衍射画面
Factor Data
Rwork(%) 19.77
Rfree(%) 24.35
RMSDs
Bond length(?) 0.0065
Bond angles (°) 1.011
Ramachandran plot
Most-favored regions (%) 98.62
additional allowed regions (%) 1.01
disallowed regions (%) 0.37
表2  脱卤酶DehDIV-R晶体结构精修结果
图8  脱卤酶DehDIV-R晶体结构Ramachandran图
图9  脱卤酶DehDIV-R整体结构示意图(a)与活性口袋(b)
[1] Kensuke F . Oxygenases and dehalogenases: Molecular approaches to efficient degradation of chlorinated environmental pollutants. Journal of the Agricultural Chemical Society of Japan, 2006,70(10):2335-2348.
[2] Kurihara T, Esaki N . Bacterial hydrolytic dehalogenases and related enzymes:Occurrences,reaction mechanisms and applications. Chemical Record, 2010,8(2):67-74.
[3] Hill K E, Marchesi J R, Weightman A J . Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. Journal of Bacteriology, 1999,181(8):2535-2547.
pmid: 10198020
[4] Wightman A J, Tooping A W, Hill K E , et al. Transposition of DEH,a broad-host-range transposon flanked by ISPpu12,in Pseudomonas putida is associated with genomic rearrangements and dehalogenase gene silencing. Journal of Bacteriology, 2002,184(23):6581-6591.
doi: 10.1128/JB.184.23.6581-6591.2002
[5] Li Y F, Kurihara T, Ichiyama S , et al. Mass spectrometric analysis of the reactions catalyzed by L-2-haloacid dehalogenase mutants and implications for the roles of the catalytic amino acid residues. Journal of Molecular Catalysis B Enzymatic, 2003,23(2):337-345.
doi: 10.1016/S1381-1177(03)00097-3
[6] Hisano T, Hata Y, Fujii T , et al. Crystallization and preliminary X-ray crystallographic studies of L-2-haloacid dehalogenase from Pseudomonas sp.YL.Proteins-structure Function & Bioinformatics, 2015,24(4):520-522.
[7] Ridder I S, Rozeboom H J, Kalk K H , et al. Three-dimensional structure of L-2-haloacid dehalogenase from xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate. Journal of Biological Chemistry, 1997,272(52):33015-33022.
doi: 10.1074/jbc.272.52.33015
[8] Schmidberger J W, Wilce J A, Andrew J W , et al. Purification,crystallization and preliminary crystallographic analysis of DehI,a group I α-haloacid dehalogenase from Pseudomonas putida strain PP3. Acta Crystallographica Section F, 2010,64(7):596-598.
[9] Schmidberger J W, Wilce J A, Andrew J W , et al. The crystal structure of DehI reveals a new alpha-haloacid dehalogenase fold and active-site mechanism. Journal of Molecular Biology, 2008,378(1):284-294.
doi: 10.1016/j.jmb.2008.02.035
[10] Effendi A J, Greenaway S D, Dancer B N . Isolation and characterization of 2,3-dichloro-1-propanol-degrading rhizobia. Applied and Environmental Microbiology, 2000,66(7):2882-2887.
doi: 10.1016/j.ijmm.2006.02.008 pmid: 92087
[11] Higgins T P, Hope S J, Effendi A J , et al. Biochemical and molecular characterisation of the 2,3-dichloro-1-propanol dehalogenase and stereospecific haloalkanoic dehalogenases from a versatile Agrobacterium sp. Biodegradation, 2005,16(5):485-492.
doi: 10.1007/s10532-004-5670-5
[12] Cairns S S, Cornish A, Cooper R A . Cloning ,sequencing and expression in Escherichia coli of two Rhizobium sp.genes encoding haloalkanoate dehalogenases of opposite stereospecificity. European Journal of Biochemistry, 1996,235(3):744-749.
doi: 10.1111/ejb.1996.235.issue-3
[13] 项炯华, 吴坚平, 王能强 , 等. 2-氯丙酸脱卤酶产酶菌种的筛选及酶学性质研究. 化学反应工程与工艺, 2005,21(6):537-541.
Xiang J H, Wu J P, Wang N Q , et al. Screening of 2-chloropropionic acid dehalogenase-production microorganisms and its enzymatic characteristics. Chemical Reaction Engineering and Technology, 2005,21(6):537-541.
[14] 林春娇 . C2 /C3卤代酸脱卤酶的筛选及克隆表达. 杭州: 浙江大学, 2011.
Lin C J . Screening,cloning and expression for C2 /C3 haloacid dehalogenases. Hangzhou:Zhejiang University, 2011.
[15] Malakhov M P, Mattern M R, Malakhova O A , et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. Journal of Structural & Functional Genomics, 2004,5(1-2):75-86.
doi: 10.1023/B:JSFG.0000029237.70316.52 pmid: 15263846
[16] Marblestone J G, Edavettal S C, Lim Y , et al. Comparison of SUMO fusion technology with traditional gene fusion systems:Enhanced expression and solubility with SUMO. Protein Science, 2006,15(1):182-189.
doi: 10.1110/ps.051812706
[1] 张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.
[2] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[3] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[4] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[5] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[6] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[7] 陈心怡,刘护,戴大章,李春. 提高糖基化的酶蛋白可结晶性研究 *[J]. 中国生物工程杂志, 2020, 40(3): 154-162.
[8] 朱彤彤,杨磊,刘应保,孙文秀,张修国. 辣椒疫霉PcCRN20-C蛋白的表达纯化及结晶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 116-123.
[9] 潘炳菊,张宛怡,申会涛,刘婷婷,李中媛,罗学刚,宋亚囝. 甘露寡糖分离纯化研究进展*[J]. 中国生物工程杂志, 2020, 40(11): 90-95.
[10] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[11] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[12] 景佳美,徐欣,王敏,彭如超,施一. 沙粒病毒聚合酶C端的表达纯化与结晶条件筛选 *[J]. 中国生物工程杂志, 2019, 39(12): 18-23.
[13] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[14] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.
[15] 李诗洁,杨艳坤,刘萌,白仲虎,金坚. SUMO蛋白酶Ulp1的高效表达纯化并通过His-SUMO标签制备scFv *[J]. 中国生物工程杂志, 2018, 38(3): 51-61.