Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (8): 1-9    DOI: 10.13523/j.cb.20180801
研究报告     
β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *
李明英,王仁军,张帆,迟彦()
大连大学生命科学与技术学院 辽宁省糖脂代谢重点实验室 大连 116622
The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments
Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI()
School of Life Science and Technology, Dalian University,Key Laboratory of Glycolipid Metabolism, Dalian 116622, China
 全文: PDF(834 KB)   HTML
摘要:

β2糖蛋白Ⅰ (beta 2- glycoprotein Ⅰ,β2GPⅠ) 是抗磷脂综合征(antiphospholipid syndrome,APS) 血清中抗磷脂抗体(antiphospholipid antibody,aPL)的主要抗原。β2GPⅠ 通过第五结构域与阴性磷脂oxLDL结合,进而被aPL识别,是APS动脉血栓发生的关键事件。该研究构建了编码β2GPⅠ第五结构域(β2GPⅠ-DⅤ)、β2GPⅠ-DⅤ突变体及β2GPⅠ-DⅤ的Phe280-Ala320片段的原核表达载体,对其进行诱导表达和纯化,解析了β2GPⅠ-DⅤ与阴性磷脂结合的分子机制,结果表明,β2GPⅠ-DⅤ中Cys281-Cys288以及Ser311-Lys317区段在空间上维持一定构型是与CL结合所必须的前提条件,而C245-C296,C288-C326两个二硫键在维持二者空间构型方面起到一定的作用。在此基础上,进一步检测了具有结合CL生物学活性的rDⅤ结合oxLDL以及APS血清中oxLDL的活性,表明rDⅤ具有与天然β2GPⅠ相一致的生物学活性。该研究获得的rβ2GPⅠ-DⅤ,以及与oxLDL结合的方法体系的建立,为APS早期实验室诊断奠定基础。

关键词: 抗磷脂综合征β2糖蛋白Ⅰ心磷脂氧化低密度脂蛋白原核表达    
Abstract:

Beta 2-glycoprotein Ⅰ (β2GPⅠ)is the main antigen of antiphospholipid antibody (aPL) in serum of antiphospholipid syndrome (APS). β2GPⅠ binding to oxLDL via its the fifth domian and then subsequently recognized by aPL is a key event in the development of APS arterial thrombosis. In this study, a prokaryotic expression vector encoding β2GPⅠ fifth domain (β2GPⅠ-DⅤ), β2GPⅠ-DⅤ mutant and the Phe280-Ala320 fragment of β2GPⅠ-DⅤ were constructed, their induced expression and purification were performed, and the molecular mechanism of the binding of β2GPⅠ-DⅤ to negative phospholipids was analyzed. Results showed that the spatial configuration of the Cys281-Cys288 and Ser311-Lys317 segments in β2GPⅠ-DⅤ, which are maintained by the two disulfide bonds in C245-C296 and C288-C326, is a necessary precursor condition for the binding to CL. On this basis, the binding activity of rDⅤ to oxLDL and oxLDL in the serum of APS were further examined, indicating that rDⅤ has biological activity consistent with that of natural β2GPⅠ. The obtainment of rβ2GPⅠ-DⅤ and the establishment of the method in rβ2GPⅠ-DⅤ binding to oxLDL in this study lay a foundation for the early laboratory diagnosis of APS.

Key words: Antiphospholipid syndrome    Beta 2-glycoprotein Ⅰ    Cardiolipin    Oxidized low density protein    Prokaryotic expression
收稿日期: 2018-03-23 出版日期: 2018-09-11
ZTFLH:  Q513  
基金资助: 国家自然科学基金(81202536);国家自然科学基金(81270361);国家自然科学基金(30971232)
通讯作者: 迟彦     E-mail: chi_yan@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李明英
王仁军
张帆
迟彦

引用本文:

李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.

Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments. China Biotechnology, 2018, 38(8): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180801        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I8/1

图1  DⅤ、mDⅤ以及cDⅤ PCR 基因扩增
图2  表达载体酶切鉴定
图3  rDⅤ 、rmDⅤ和 rcDⅤ的诱导表达
图4  rDⅤ、rmDⅤ和 rcDⅤ的纯化
图5  rDⅤ、rmDⅤ和 rcDⅤ的Western blot分析
图6  rDⅤ、rmDⅤ和 rcDⅤ与CL结合的HPTLC和ELISA分析
Absorbance at 492nm
nβ2GPⅠ rDⅤ rmDⅤ rcDⅤ Blank
2.132 2.234 0.453 0.357 0.389
1.953 2.456 0.388 0.422 0.298
1.885 2.135 0.223 0.298 0.327
表1  ELISA方法检测 rDⅤ、rmDⅤ和rcDⅤ与CL的结合活性
图7  ELISA方法检测 rβ2GPⅠ-DⅤ蛋白与oxLDL及APS血清oxLDL的结合活性
Absorbance at 492nm
nβ2 GPⅠ+
oxLDL
rβ2GPⅠ-DⅤ
+oxLDL
rβ2 GPⅠ-
DⅤ+LDL
Negative
control
2.132 2.234 0.453 0.357
1.953 2.456 0.388 0.422
1.885 2.135 0.223 0.298
表2  ELISA方法检测 rβ2GPⅠ-DⅤ蛋白与oxLDL的结合活性
Absorbance at 492nm
Blank nβ2GPⅠ rβ2GPⅠ-DⅤ
serum#3 0.1530 0.866 0.855
serum#2 0.1250 0.799 0.750
serum#1 0.1300 0.981 0.893
表3  ELISA方法检测 rβ2GPⅠ-DⅤ蛋白与APS血清oxLDL的结合活性
[1] Hughes G R, Harris N N, Gharavi A E . The anticardiolipin syndrome. J Rheumatol, 1986,13(3):486-489.
[2] Galli M, Comfurius P, Maassen C , et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet, 1990,335(8705):1544-1547.
doi: 10.1016/0140-6736(90)91374-J pmid: 1972485
[3] McNeil H P, Simpson R J, Chesterman C N , et al. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation:beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A , 1990,87(11):4120-4124.
doi: 10.1073/pnas.87.11.4120
[4] Igarashi M, Matsuura E, Igarashi Y , et al. Human beta2-glycoprotein I as an anticardiolipin cofactor determined using mutants expressed by a baculovirus system. Blood, 1996,87(8):3262-3270.
[5] Hunt J, Krilis S . The fifth domain of beta 2-glycoprotein I contains a phospholipid binding site (Cys281-Cys288) and a region recognized by anticardiolipin antibodies. J Immunol, 1994,152(2):653-659.
[6] Sheng Y, Sali A, Herzog H , et al. Site-directed mutagenesis of recombinant human beta 2-glycoprotein I identifies a cluster of lysine residues that are critical for phospholipid binding and anti-cardiolipin antibody activity. J Immunol, 1996,157(8):3744-3751.
[7] Dupuy D'Angeac A, Stefas I, Graafland H , et al. Biotinylation of glycan chains in beta2 glycoprotein I induces dimerization of the molecule and its detection by the human autoimmune anti-cardiolipin antibody EY2C9. Biochem J, 2006,393(Pt 1):117-127.
doi: 10.1042/BJ20050932
[8] Palomo I, Pereira J, Alarcon M , et al. Val/Leu247 and Trp/Ser316 polymorphisms in beta 2 glycoprotein I and their association with thrombosis in unselected Chilean patients. Clin Rheumatol, 2007,26(3):302-307.
doi: 10.1007/s10067-006-0289-z
[9] Sanghera D K, Wagenknecht D R, McIntyre J A , et al. Identification of structural mutations in the fifth domain of apolipoprotein H (beta 2-glycoprotein I) which affect phospholipid binding. Hum Mol Genet, 1997,6(2):311-316.
doi: 10.1093/hmg/6.2.311
[10] Mehdi H, Naqvi A, Kamboh M I . A hydrophobic sequence at position 313-316 (Leu-Ala-Phe-Trp) in the fifth domain of apolipoprotein H (beta2-glycoprotein I) is crucial for cardiolipin binding. Eur J Biochem, 2000,267(6):1770-1776.
doi: 10.1046/j.1432-1327.2000.01174.x
[11] Steinkasserer A, Estaller C, Weiss E H , et al. Complete nucleotide and deduced amino acid sequence of human beta 2-glycoprotein I. Biochem J, 1991,277(Pt 2):387-391.
doi: 10.1042/bj2770387
[12] Bouma B, de Groot P G, van den Elsen J M , et al. Adhesion mechanism of human beta(2)-glycoprotein I to phospholipids based on its crystal structure. EMBO J, 1999,18(19):5166-5174.
doi: 10.1093/emboj/18.19.5166
[13] Ioannou Y, Pericleous C, Giles I , et al. Rahman A: Binding of antiphospholipid antibodies to discontinuous epitopes on domain I of human beta(2)-glycoprotein I: mutation studies including residues R39 to R43. Arthritis Rheum, 2007,56(1):280-290.
doi: 10.1002/(ISSN)1529-0131
[14] Kasahara H, Matsuura E, Kaihara K , et al. Antigenic structures recognized by anti-beta2-glycoprotein I auto-antibodies. Int Immunol, 2005,17(12):1533-1542.
doi: 10.1093/intimm/dxh330
[15] Matsuura E, Igarashi Y, Yasuda T , et al. Anticardiolipin antibodies recognize beta 2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med, 1994,179(2):457-462.
doi: 10.1084/jem.179.2.457
[16] Li J, Chi Y, Liu S , et al. Recombinant domain V of beta2-glycoprotein I inhibits the formation of atherogenic oxLDL/beta2-glycoprotein I complexes. J Clin Immunol, 2014,34(6):669-676.
doi: 10.1007/s10875-014-0063-y
[17] da Silva F F, Levy R A, de Carvalho J F . Cardiovascular risk factors in the antiphospholipid syndrome. J Immunol Res, 2014,2014:621270.
doi: 10.1155/2014/621270
[18] Itabe H, Yamamoto H, Suzuki M , et al. Oxidized phosphatidylcholines that modify proteins. Analysis by monoclonal antibody against oxidized low density lipoprotein. J Biol Chem, 1996,271(52):33208-33217.
doi: 10.1074/jbc.271.52.33208
[19] Mori T, Takeya H, Nishioka J , et al. beta 2-Glycoprotein I modulates the anticoagulant activity of activated protein C on the phospholipid surface. Thromb Haemost, 1996,75(1):49-55.
doi: 10.1055/s-0038-1650220
[20] Zhang M, Liu B, Zhang Y , et al. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol, 2007,45(2):496-500.
doi: 10.1128/JCM.01720-06
[21] Rahgozar S, Yang Q, Giannakopoulos B , et al. Beta2-glycoprotein I binds thrombin via exosite I and exosite II: anti-beta2-glycoprotein I antibodies potentiate the inhibitory effect of beta2-glycoprotein I on thrombin-mediated factor XIa generation. Arthritis Rheum, 2007,56(2):605-613.
doi: 10.1002/(ISSN)1529-0131
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[3] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[4] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[5] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[6] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[7] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[8] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[9] 何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.
[10] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[11] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[12] 祖力皮也·吐尔逊, 曹春宝, 温浩, 丁剑冰, 德力夏提·依米提. 细粒棘球蚴EgG1Y162基因进化分析、表达及鉴定[J]. 中国生物工程杂志, 2016, 36(4): 78-87.
[13] 周亮, 叶浩, 周瓅, 关文, 李京敬, 郜尽, 韩伟, 俞雁. 人CXCL4蛋白原核表达与纯化[J]. 中国生物工程杂志, 2016, 36(1): 7-13.
[14] 黄健, 黄美容, 朱杰华, 骆诗露, 闵迅. 肺炎链球菌SP0306蛋白的表达纯化及结晶研究[J]. 中国生物工程杂志, 2015, 35(6): 21-25.
[15] 龚隆财, 罗镇明, 杨雁青, 王振宇, 向军俭, 王宏. cTnI-linker-TnC融合蛋白的原核表达及鉴定[J]. 中国生物工程杂志, 2015, 35(4): 48-53.