Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (4): 70-77    DOI: 10.13523/j.cb.20180410
技术与方法     
负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究
段思腾1,李光然1,马义勇1,邱裕佳1,李宇2,王伟1,3,4()
1 锦州医科大学附属第一医院 锦州 121000
2 辽宁中医药大学研究生院 沈阳 110016
3 锦州医科大学骨外科学研究所 锦州 121000
4 辽宁省医学组织工程重点实验室 锦州 121000
Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF
Si-teng DUAN1,Guang-ran LI1,Yi-yong MA1,Yu-jia QIU1,Yu LI2,Wei WANG1,3,4()
1 The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
2 School of Graduate, Liaoning University of Traditional Chinese Medicine, Shenyang 110016, China
3 Department of Orthopedics Research Institute, Jinzhou Medical University, Jinzhou 121000, China
4 Key Laboratory of Medical Tissue Engineering, Jinzhou 121000, China
 全文: PDF(1559 KB)   HTML
摘要: 目的

制备负载NGF的可注射壳聚糖透明质酸复合水凝胶,探讨其理化性能以及生物相容性。

方法

首先京尼平交联制备壳聚糖透明质酸复合水凝胶材料,采用倒置法检测凝胶时间;扫描电镜观察材料形态结构;NGF释放实验、体外溶胀以及降解实验等检测凝胶材料的物理化学性能;通过MTT实验、NGF活性检测、材料与细胞共培养检测凝胶材料生物学性能。

结果

在37℃条件下,可注射凝胶材料凝胶时间在37min左右,凝胶材料为多孔网络状结构,凝胶材料8周最多能够降解76%,缓释21天的NGF具有生物活性,凝胶材料能促进RSC96细胞的粘附、增殖、迁移以及细胞活性物质的释放。

结论

京尼平交联的壳聚糖透明质酸水凝胶具有良好的生物相容性,能作为NGF的载体材料,具有成为神经导管内填充材料的潜能。

关键词: 可注射水凝胶壳聚糖透明质酸京尼平神经生长因子    
Abstract: Objective:

To prepare a carrier for NGF with injectable chitosan-hyaluronic acid hydrogel,and studying its physicochemical properties and biocompatibility.

Methods:

Preparing chitosan-hyaluronic acid hydrogel crosslinked with genipin, inverted method was used to determine the gelation time; scanning electron microscopy was used to observe the morphological structure; the physical and chemical properties were measured by NGF release, vitro swelling and degradation assay; the biological properties were measured by MTT, NGF activity assay and Co-Culture experiment.

Result:

Injectable hydrogel which had a structure porous network congealed at 37℃ in about 37 minutes, and its mostly degradation degree in 8 weeks was 76%, sustained release for 21 days with biological activity. Moreover, the chitosan-hyaluronic acid hydrogel could promote RSC96 adhesion, proliferation, migration and release of cell active substances.

Conclusion:

Genipin-crosslinked chitosan-hyaluronic acid hydrogel have good biocompatibility, and can be used as a carrier of NGF. It could be used as a potential filling material for nerve conduits.

Key words: Injectable hydrogel    Chitosan    Hyaluronic acid    Genipin    Nerve growth factor
收稿日期: 2017-12-14 出版日期: 2018-05-08
ZTFLH:  Q33  
基金资助: 辽宁省自然科学基金面上项目(201602322);辽宁省教育厅科学技术研究地方服务项目(JYTFUDF201757)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段思腾
李光然
马义勇
邱裕佳
李宇
王伟

引用本文:

段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.

Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF. China Biotechnology, 2018, 38(4): 70-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180410        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I4/70

组别 GN含量(mg) 凝胶时间(min) 孔径(μm) 孔隙率(%)
A 1 38.25±3.10 42.90±9.51 70.35±2.28
B 2 38.25±1.26 40.68±11.87 66.97±3.23
C 3 36.00±2.83 36.33±16.65 62.13±3.43
D 4 37.00±1.83 34.27±15.31 57.37±3.61
表1  不同组别水凝胶的凝胶时间、孔径、孔隙率
图1  不同凝胶材料的红外光谱图分析
图2  冻干CS-HA凝胶扫描电镜观察
图3  CS-HA溶胀比率与降解率时间动态图
图4  NGF累计释放曲线
图5  CS-HA释放NGF活性检测
图6  各组材料1、3、5天OD值
图7  RSC96与CS-HA材料共培养电镜照片
[1] Zhu S, Ge J, Wang Y , et al. A synthetic oxygen carrier-olfactory ensheathing cell composition system for the promotion of sciatic nerve regeneration. Biomaterials, 2014,35(5):1450-1461.
doi: 10.1016/j.biomaterials.2013.10.071 pmid: 24246645
[2] Jiang X, Lim S H, Mao H Q , et al. Current applications and future perspectives of artificial nerve conduits. Experimental Neurology, 2010,223(1):86-101.
doi: 10.1016/j.expneurol.2009.09.009 pmid: 19769967
[3] Ijkema-Paassen J, Jansen K, Gramsbergen A , et al. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials, 2004,25(9):1583-1592.
doi: 10.1016/S0142-9612(03)00504-0 pmid: 14697860
[4] Davies S W, Beardsall K . Nerve growth factor selectively prevents excitotoxin induced degeneration of striatal cholinergic neurones. Neuroscience Letters, 1992,140(2):161-164.
doi: 10.1016/0304-3940(92)90092-L pmid: 1386916
[5] Martínez-Serrano A, Bj?rklund A . Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1996,16(15):4604-4616.
doi: 10.1177/0148558X9701200401 pmid: 8764649
[6] Madduri S, Papalo?zos M, Gander B . Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neuroscience Research, 2009,65(1):88-97.
doi: 10.1016/j.neures.2009.06.003 pmid: 19523996
[7] Navarro X, Krueger T B, Lago N , et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. Journal of the Peripheral Nervous System, 2005,10(3):229-258.
doi: 10.1111/j.1085-9489.2005.10303.x pmid: 16221284
[8] Zhao Y Z, Jiang X, Xiao J , et al. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury. Acta Biomaterialia, 2016,29:71-80.
doi: 10.1016/j.actbio.2015.10.014 pmid: 26472614
[9] Li C, Liu K K, Tsao C Y , et al. Neuronal differentiation of human placenta-derived multi-potent stem cells enhanced by cell body oscillation on gelatin hydrogel. Journal of Bioactive & Compatible Polymers, 2014,29(6):529-544.
doi: 10.1177/0883911514553903
[10] Carballomolina O A, Velasco I . Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Frontiers in Cellular Neuroscience, 2015,9:1-12.
doi: 10.3389/fncel.2015.00013 pmid: 4330895
[11] Bellamkonda R V . Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials, 2006,27(19):3515-3518.
doi: 10.1016/j.biomaterials.2006.02.030 pmid: 16533522
[12] ?zgenel G Y . Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery, 2003,23(6):575-581.
doi: 10.1002/micr.10209 pmid: 14705074
[13] Lei Y, Gojgini S, Lam J , et al. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 2011,32(1):39-47.
doi: 10.1016/j.biomaterials.2010.08.103 pmid: 20933268
[14] Xiao Z S, Liu Y, Palumbo F S , et al. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials, 2004,25(7-8):1339-1348.
doi: 10.1016/j.biomaterials.2003.08.014 pmid: 14643608
[15] Zhao Y, Wang Y, Gong J , et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials, 2017,134:64-77.
doi: 10.1016/j.biomaterials.2017.02.026 pmid: 28456077
[16] Wang Y, Zhao Y, Sun C , et al. Chitosan degradation products promote nerve regeneration by stimulating schwann cell proliferation via miR-27a/FOXO1 axis. Molecular Neurobiology, 2016,53(1):28-39.
doi: 10.1007/s12035-014-8968-2 pmid: 25399953
[17] Bhattarai N, Gunn J, Zhang M . Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews, 2010,62(1):83-99.
doi: 10.1016/j.addr.2009.07.019 pmid: 19799949
[18] Xu H, Zhang L, Bao Y , et al. Preparation and characterization of injectable chitosan-hyaluronic acid hydrogels for nerve growth factor sustained release. Journal of Bioactive & Compatible Polymers Biomedical Applications, 2016,32(2):1-17.
doi: 10.1177/0883911516662068
[19] Mi F L, Tan Y C, Liang H F , et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 2002,23(1):181-191.
doi: 10.1016/S0142-9612(01)00094-1 pmid: 11762837
[20] Akao T, Kobashi K, Aburada M . Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biological & Pharmaceutical Bulletin, 1994,17(12):1573-1576.
doi: 10.1248/bpb.17.1573 pmid: 7735197
[21] Geuna S, Raimondo S, Fregnan F , et al. In vitro models for peripheral nerve regeneration. European Journal of Neuroscience, 2016,43(3):287-296.
doi: 10.1111/ejn.13054 pmid: 26309051
[22] Mokarram N, Merchant A, Mukhatyar V , et al. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials, 2012,33(34):8793-8801.
doi: 10.1016/j.biomaterials.2012.08.050 pmid: 22979988
[23] Lee S K, Wolfe S W . Peripheral nerve injury and repair. Journal of the American Academy of Orthopaedic Surgeons, 2000,8(4):243-252.
doi: 10.5435/00124635-200007000-00005
[24] Chenite A, Chaput C, Wang D , et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000,21(21):2155-2161.
doi: 10.1016/S0142-9612(00)00116-2 pmid: 10985488
[25] Cho J, Heuzey M C, Bégin A , et al. Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature. Biomacromolecules, 2005,6(6):3267-3275.
doi: 10.1021/bm050313s pmid: 16283755
[26] Kim S, Nishimoto S K, Bumgardner J D, Haggard W O , et al. A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials, 2010,31(14):4157-4166.
doi: 10.1016/j.biomaterials.2010.01.139 pmid: 20185170
[27] Wang W, Zhang P, Shan W , et al. A novel chitosan-based thermosensitive hydrogel containing doxorubicin liposomes for topical cancer therapy. Journal of Biomaterials Science Polymer Edition, 2013,24(14):1649-1659.
doi: 10.1080/09205063.2013.789357 pmid: 23607789
[28] Chao X, Xu L, Li J , et al. Facilitation of facial nerve regeneration using chitosan-β-glycerophosphate-nerve growth factor hydrogel. Acta Oto-Laryngologica, 2016,136(6):1-7.
doi: 10.3109/00016489.2015.1083120 pmid: 26366837
[29] Sivashanmugam A, Kumar R A, Priya M V , et al. An overview of injectable polymeric hydrogels for tissue engineering. European Polymer Journal, 2015,72:543-565.
doi: 10.1016/j.eurpolymj.2015.05.014
[30] Bunge R P . The role of the Schwann cell in trophic support and regeneration. Journal of Neurology, 1994,242(1):S19-S21.
doi: 10.1007/BF00939235 pmid: 7699403
[31] Chiono V, Tonda-Turo C . Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Progress in Neurobiology, 2015,131:87-104.
doi: 10.1016/j.pneurobio.2015.06.001 pmid: 26093353
[32] Morandi S, Brasca M . Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Molecular & Cellular Neurosciences, 2012,50(1):103-112.
doi: 10.1016/j.mcn.2012.04.004 pmid: 22735691
[1] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[2] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[3] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[4] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[5] 郜娇娇, 杨树林. 基因工程技术优化透明质酸生产的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 72-77.
[6] 郜娇娇, 杨树林. 微生物发酵法生产高分子量透明质酸的研究进展[J]. 中国生物工程杂志, 2017, 37(5): 118-125.
[7] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[8] 张清芳, 刘如明, 肖建辉. 透明质酸在间充质干细胞向软骨细胞分化中的应用[J]. 中国生物工程杂志, 2016, 36(6): 92-99.
[9] 李锐, 蔡平讨, 叶丽冰, 张宏宇, 肖健. [PEAD:肝素:NGF]生物材料促进大鼠坐骨神经损伤恢复[J]. 中国生物工程杂志, 2016, 36(2): 68-72.
[10] 陈建澍, 王婧茜, 易喻, 龚海平, 应国清. 透明质酸及其衍生物研究进展[J]. 中国生物工程杂志, 2015, 35(2): 111-118.
[11] 李婷, 孙静, 赵相哲, 连立强, 谢富强. 骨形成蛋白2/珍珠层粉/壳聚糖支架制备及生物性能研究[J]. 中国生物工程杂志, 2015, 35(11): 1-6.
[12] 蒋延超, 蒋世云, 傅凤鸣, 黄凯, 康星欣, 徐丹. 透明质酸生物合成途径及基因工程研究进展[J]. 中国生物工程杂志, 2015, 35(1): 104-110.
[13] 王皓, 吴丽, 朱小花, 刘旺旺, 杨公明. 甲壳素脱乙酰酶的研究概况及展望[J]. 中国生物工程杂志, 2015, 35(1): 96-103.
[14] 刘奔, 张彩顺, 高绪斌, 李桦楠, 孔旭. 聚己内酯/壳聚糖神经导管复合骨髓间充质干细胞促进大鼠坐骨神经损伤修复的研究[J]. 中国生物工程杂志, 2014, 34(2): 34-38.
[15] 包海生, 高秀峰, 郑雪妮, 李永生. 壳聚糖锌离子固定化亲和层析填料的制备与性质[J]. 中国生物工程杂志, 2012, 32(05): 85-90.