Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (4): 63-69    DOI: 10.13523/j.cb.20180409
技术与方法     
Acyl-ACPs的规模化合成
丁威1,2,冯延宾1,曹旭鹏1,薛松1()
1 中国科学院大连化学物理研究所 大连 116023
2 中国科学院大学 北京 100049
Large-Scale Synthesis of Acyl-ACPs
Wei DING1,2,Yan-bin FENG1,Xu-peng CAO1,Song XUE1()
1 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1199 KB)   HTML
摘要:

脂酰-酰基载体蛋白(fatty acyl-acyl carrier protein, acyl-ACP)是多种生物合成途径中的酰基供体。因供给限制,体外研究常用类似物acyl-CoA替代,而CoA部分和ACP有较大差异,限制了相关酶对底物识别的认识。因此稳定获得大量acyl-ACP是体外研究相关酶的催化机制及其代谢途径的关键。研究以holo-ACP和C4~C18链长脂肪酸为底物,在哈氏弧菌acyl-ACP合成酶(Vibrio harveyi acyl-ACP synthetase, VhAasS)催化下合成不同碳链长度的acyl-ACP;通过高效液相色谱(HPLC)方法,确定不同碳链长度acyl-ACP的合成产率。结果表明:碳链为C4~C14的acyl-ACP产率均高于90.0%,16:0-ACP产率为85.9%,18:1-ACP产率仅为25.7%。通过加入Li +优化反应体系,16:0-ACP、18:1-ACP的产率达90.0%。进一步优化扩大反应体系可稳定获得20mg以上acyl-ACP;最后,把合成的acyl-ACP应用到甘油-3-磷酸酰基转移酶催化的反应体系中。不同链长acyl-ACP的规模化合成研究,为体外研究相关酶的催化机制提供重要基础。

关键词: acyl-ACP合成酶acyl-ACP高效液相色谱    
Abstract:

Acyl-acyl carrier proteins (acyl-ACPs) are substrates for many biosynthesis pathways. However, acyl-ACP is substituted by acyl-CoA for studies in vitro as a result of supply restriction, which causes many questions in enzymatic analysis. Thus, obtaining large scale of acyl-ACP steadily is very important to study the related enzymes and metabolic pathways in vitro. acyl-ACP synthetase catalyze the conversion of holo-ACP using fatty acid as acyl donor in vitro while no productivity has been reported before. Here an acyl-ACP synthetase from Vibrio harveyi was used to catalyze the synthesis of (C4~C18) with holo-ACP, and the yield of acyl-ACP was confirmed by high performance liquid chromatography (HPLC). The results indicated that the yields of medium chains (C4~C14) acyl-ACPs were more than 90.0% while the long chain yields of 16:0-ACP and 18:1-ACP were 85.9% and 25.7%, respectively. Via introducing Li + to the reaction system, the yield of long chain acyl-ACPs were elevated above 90.0%。Then the reaction parameters were optimized in the enlarged reaction system, and more than 20mg acyl-ACPs were steadily obtained. Additionally, two species of holo-ACP were used to validate the versatility of the reaction system. Finally the acyl-ACP activity was conformed using a glycerol-3-phosphate acyltransferase. The synthesis of different chain acyl-ACPs are of great significance for research of the catalysis mechanism of related enzymes.

Key words: acyl-ACP synthetase    acyl-ACP    HPLC
收稿日期: 2018-01-30 出版日期: 2018-05-08
ZTFLH:  Q816  
基金资助: * 国家自然科学基金资助项目(21576253)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁威
冯延宾
曹旭鹏
薛松

引用本文:

丁威,冯延宾,曹旭鹏,薛松. Acyl-ACPs的规模化合成[J]. 中国生物工程杂志, 2018, 38(4): 63-69.

Wei DING,Yan-bin FENG,Xu-peng CAO,Song XUE. Large-Scale Synthesis of Acyl-ACPs. China Biotechnology, 2018, 38(4): 63-69.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180409        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I4/63

参与的反应和代谢过程 参考文献
硫酯酶 催化不同链长acyl-ACP水解;参与脂肪酸、聚酮类抗生素合成 [1]
脂肪酸去饱和酶 催化acyl-ACP去饱和;参与不饱和脂肪酸合成 [9]
甘油-3-磷酸酰基转移酶 催化acyl-ACP和甘油-3-磷酸反应,生成LPA;参与磷脂合成 [2]
聚酮合酶 催化酮脂酰ACP缩合;参与聚酮类抗生素的合成 [3]
UDP-氨基葡萄糖
乙酸酐酰基转移酶
催化β-羟肉豆蔻酸和UDP-氨基葡萄糖乙酸酐,生成UDP-3-单酰氨基葡萄糖乙酸酐;
参与类脂A的合成
[4]
表1  以acyl-ACP为底物的酶
图1  acyl-ACP的合成方法
时间
(min)
流量
(ml/min)
乙腈
(%)

(1‰三氟乙酸)
0 1 35 65
15 1 55 45
16 1 35 65
20 1 35 65
表2  HPLC流动相的梯度洗脱程序
合成体系中各成分 50μl合成体系
各成分含量1)
20ml合成体系
各成分含量2)
FA-Na (μmol/L) 150 200
holo-ACP (μmol/L) 50 75
MgCl2 (mmol/L) 10 10
Li2SO4 (mmol/L) 10 10
ATP (mmol/L) 5 10
DTT (mmol/L) 2 2
Tris-HCl (mmol/L) 25 25
温度 (℃) 30 30
时间 (h) 0.5 2
表3  acyl-ACP合成反应体系
图2  HPLC检测apo-ACP和holo-ACP
acyl-ACP 保留时间(min) Aholo-ACP Aacyl-ACP 产率(%)
4:0-ACP 6.63 4 567.56 4 432.46 97.0
6:0-ACP 7.77 6 015.08 5 616.05 93.4
8:0-ACP 8.52 3 513.82 3 460.80 98.5
10:0-ACP 9.75 10 421.60 9 372.87 90.0
12:0-ACP 11.07 6 816.42 6 607.80 96.9
14:0-ACP 12.48 4 073.94 3 676.46 90.2
16:0-ACP 13.57 2 201.83 1 890.69 85.9
18:1-ACP 13.89 2 201.83 565.83 25.7
表4  不同链长acyl-ACP的保留时间及产率
反应体系 保留时间(min) Aholo-ACP Aacyl-ACP 产率(%)
a 18:1-ACP, 0.5% Triton X-100 14.61 2 201.83 785.83 35.8
b 18:1-ACP,10mmol/L Li2SO4 13.89 2 190.19 1 943.85 88.8
c 16:0-ACP,10mmol/L Li2SO4 13.58 2 190.19 2 092.82 95.5
表5  不同反应条件下acyl-ACP的合成效率
图3  Sp6803 ACPs 的高效液相色谱图
反应体系 保留时间(min) Aholo-ACP Aacyl-ACP 产率(%)
a Table 1.2.3b with 5mmol/L ATP 14.61 9 962.66 5 123.59 51.4
b Table 1.2.3b with 10mmol/L ATP 14.61 9 962.66 8 485.48 85.2
表6  18:1-ACP规模化合成的条件优化
图4  acyl-ACP的生物活性检测
[1] Magnuson K, Jackowski S, Rock C O , et al. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev, 1993,57(3):522-542.
[2] Rock C O, Jackowski S . Regulation of phospholipid synthesis in Escherichia coli. J Biol Chem, 1982,257(18):10759-10765.
[3] Katz L, Donadio S . Polyketide synthesis-prospects for hybrid antibiotics. Annu Rev Microbiol, 1993,47(1):875-912.
doi: 10.1146/annurev.mi.47.100193.004303 pmid: 8257119
[4] Anderson M S , Raetz C R H. Biosynthesis of Lipid A Precursors in Escherichia coli. A membrane-bound enzyme that transfers a palmitoyl residue from a glycerophospholipid to lipid X. J Biol Chem, 1987,262(11):5170-5179.
pmid: 3549717
[5] Parris K D, Lin L, Tam A , et al. Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. Structure, 2000,8(8):883-895.
doi: 10.1016/S0969-2126(00)00178-7 pmid: 10997907
[6] Mayo K H, Prestegard J H . Acyl carrier protein from Escherichia coli. Structural characterization of short-chain acylated acyl carrier proteins by NMR. Biochemistry, 1985,24(26):7834-7838.
doi: 10.1021/bi00347a049 pmid: 3912008
[7] Rock C O, Cronan J E . Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochem Biophys Acta, 1996,1302(1):1-16.
doi: 10.1016/0005-2760(96)00056-2 pmid: 8695652
[8] Sarria S, Kruyer N S, Peraltayahya P . Microbial synthesis of medium-chain chemicals from renewables. Nature Biotechnology, 2017,35(12):1158-1158.
doi: 10.1038/nbt.4022 pmid: 29220020
[9] Cahoon E B, Lindqvist Y, Schneiider G , et al. Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci, 1997,94(10):4872-4877.
doi: 10.1073/pnas.94.10.4872 pmid: 9144157
[10] Byers D M, Holmes C G . A soluble fatty acyl - acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi. Biochemistry and Cell Biology, 1990,68(7-8):1045-1051.
doi: 10.1139/o90-154 pmid: 2223012
[11] Rock C O, Cronan J E. Solubilization , Purification, salt activation of acyl-acyl carrier protein synthetase from Escherichia coli. J Biol Chem, 1979,254(15):7116-7122.
[12] Gangar A, Karande A A, Rajasekharan R . Purification and characterization of acyl-acyl carrier protein synthetase from oleaginous yeast and its role in triacylglycerol biosynthesis. Biochem J, 2001,360(2):471-479.
doi: 10.1042/0264-6021:3600471 pmid: 11716776
[13] Beld J, Finzel K, Burkart M D . Versatility of acyl-acyl carrier protein synthetases. Chemistry & Biology, 2014,21(10):1293-1299.
doi: 10.1016/j.chembiol.2014.08.015 pmid: 25308274
[14] Kaczmarzyk D, Fulda M . Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiology, 2010,152(3):1598-1610.
doi: 10.1104/pp.109.148007
[15] Kuo T M, Ohlrogge J B . Acylation of plant acyl carrier proteins by acyl-acyl carrier protein synthetase from Escherichia coli. Arch Biochem Biophys, 1984,230(1):110-116.
doi: 10.1016/0003-9861(84)90091-2 pmid: 6370139
[16] Liu T, Vora H, Khosla C . Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng, 2010,12(4):378-386.
doi: 10.1016/j.ymben.2010.02.003 pmid: 20184964
[17] Jiang H, Zirkle R, Metz J G , et al. The role of tandem acyl carrier protein domains in polyunsaturated fatty acid biosynthesis. J Am Chen Soc, 2008,130(20):6336-6337.
doi: 10.1021/ja801911t pmid: 18444614
[18] Jiang Y F, Chan C H, Cronan J E . The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-CoA synthetase family. Biochemistry, 2006,45(33):10008-10019.
doi: 10.1021/bi060842w pmid: 16906759
[19] Ouyang L L, Li H, Yan X Y , et al. Site-directed mutagenesis from arg195 to His of a microalgal putatively chloroplastidial glycerol-3-phosphate acyltransferase causes an increase in phospholipid levels in yeast. Frontiers in Plant Science, 2016,7:286.
doi: 10.3389/fpls.2016.00286 pmid: 4785142
[20] Post-Beittenmiller D, Jaworski J G, Ohlrogge J B . In vivo pools of free and acylated acyl carrier proteins in spinach. Evidence for sites of regulation of fatty acid biosynthesis. J Biol Chem, 1991,266(3):1858-1865.
pmid: 1988450
[21] Rock C O, Cronan J E, Armitage I M . Molecular properties of acyl carrier protein derivatives. J Biol Chem, 1981,256(6):2669-2674.
doi: 10.1016/0165-022X(81)90075-0 pmid: 7009596
[22] Bi H, Wang H, Cronan J E . FabQ, a dual-function dehydratase/isomerase, circumvents the last step of the classical fatty acid synthesis cycle. Chemistry & Biology, 2013,20(9):1157-1167.
doi: 10.1016/j.chembiol.2013.07.007 pmid: 4562794
[23] Lin S, Hanson R E, Cronan J E . Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol, 2010,6(9):682-682.
doi: 10.1038/nchembio.420 pmid: 20693992
[24] Patel A, Malinovska L, Saha S , et al. ATP as a biological hydrotrope. Science, 2017,356(6339):753-756.
doi: 10.1126/science.aaf6846 pmid: 28522535
[1] 沈伟涛, 王明钰, 王允坤, 王新华, 徐海. 抗生素含量测定方法的分析概述[J]. 中国生物工程杂志, 2016, 36(6): 119-126.
[2] 马怀远, 黄非, 白林含. 利用同源重组的方法提高大肠杆菌W3110天冬氨酸的积累[J]. 中国生物工程杂志, 2014, 34(06): 61-67.
[3] 贾伟, 陈熙, 周春喜, 宋兰坤. 单克隆抗体仿制药物的结构分析策略[J]. 中国生物工程杂志, 2012, 32(10): 93-98.
[4] 朱宽鹏, 赵树进. 芪合酶基因Fm-STS在何首乌毛状根中的过量表达及dsRNA干扰[J]. 中国生物工程杂志, 2012, 32(08): 41-48.
[5] 刘阿娜 周敏毅 宋文进 刘建平. HPLC法测定重组人干扰素α1b粉雾剂的含量[J]. 中国生物工程杂志, 2010, 30(05): 92-95.
[6] 王前1,张贵锋2,刘涛2,刘永东2,马润宇1,苏志国2. 基于串联质谱的鱼皮明胶鉴别研究[J]. 中国生物工程杂志, 2009, 29(06): 101-107.
[7] 崔琳,张贵锋,刘涛,闭静秀,马润宇,苏志国. 液相色谱/质谱联用法分析不同年龄鼠皮肤中I型、III型胶原蛋白相对含量[J]. 中国生物工程杂志, 2007, 27(4): 71-76.
[8] 许激扬,汪福源. 诱变红酵母RY-051生物合成类胡萝卜素的研究[J]. 中国生物工程杂志, 2006, 26(0): 128-131.
[9] 孙爱梅, 张贵锋, 倪文, 苏志国. 胶原蛋白降解物高效液相色谱/质谱联用分析[J]. 中国生物工程杂志, 2005, 25(02): 66-72.
[10] 聂实践, 胡冬琴, 王蒙. 错位双链寡核苷酸中碱基比例的测定研究[J]. 中国生物工程杂志, 2004, 24(4): 77-78,80.
[11] 崔冶建, 易有荣, 汪艳, 付亚平, 任洁. 高效液相色谱测定鱼体组织中鱼静安的浓度[J]. 中国生物工程杂志, 2003, 23(6): 84-86.
[12] 周艳荣, 戴秋云, 刘凤云, 黄培堂. 高效液相色谱法考察新芋螺毒素SO3的化学稳定性[J]. 中国生物工程杂志, 2002, 22(5): 72-74.
[13] 谢和金, 卢毅, 邱咏梅, 肖毅, 郭建强, 褚明辉, 孙淑兰. 高效液相色谱法测定酵母中麦角固醇含量[J]. 中国生物工程杂志, 2000, 20(4): 75-76.
[14] 刘国诠. 制备液相色谱技术[J]. 中国生物工程杂志, 1990, 10(2): 15-18.