Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (4): 8-16    DOI: 10.13523/j.cb.20180402
研究报告     
异源表达AtCYSa基因烟草的耐盐和抗虫特性分析
姚民,朱淑华,李佛生,张士彦,唐琳()
四川大学生命科学学院 生物资源与生态环境教育部重点实验室 成都 610064
Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis
Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG()
Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
 全文: PDF(956 KB)   HTML
摘要:

植物半胱氨酸蛋白酶抑制剂在植物防御生物与非生物胁迫过程中发挥着重要的作用。拟南芥中的半胱氨酸蛋白酶抑制剂AtCYSa基因的表达能够受到多种胁迫的诱导,且在拟南芥中过量表达AtCYSa基因可以增强转基因拟南芥抵御盐、干旱和氧化等非生物胁迫的能力。为了进一步探究AtCYSa基因的功能以及在烟草中的应用,构建了植物表达载体pCAMBIA 1302-AtCYSa。通过PCR以及RT-PCR验证共获得4株阳性转基因烟草,选择其中3株转基因烟草进行盐胁迫处理和抗虫活性实验。在盐胁迫处理中,100mmol/L NaCl和200mmol/L NaCl处理组的丙二醛含量显著低于野生型对照组。伊文思蓝染色和细胞相对活性结果表明,转基因烟草的细胞活性比野生型烟草明显偏高。这说明在盐胁迫处理下,AtCYSa基因的表达能够起到保护转基因烟草的作用。抗虫活性研究发现,实验组的幼虫总重均呈明显的下降趋势,且幼虫死亡率显著高于对照组。这些结果表明,AtCYSa基因在烟草中的过量表达能够增强转基因烟草的耐盐以及抗虫的能力。

关键词: 转基因烟草AtCYSa耐盐抗虫    
Abstract:

Plant cysteine protease inhibitors play an important role in defense of biotic and abiotic stresses. The expression of the AtCYSa gene in Arabidopsis thaliana can be induced by a variety of stresses, and the over-expression of AtCYSa in Arabidopsis thaliana can enhance the ability to resist abiotic stress like salt, drought and oxidation. In order to further explore the function of AtCYSa and its application in tobacco, the plant expression vector pCAMBIA 1302-AtCYSa was constructed. Four positive transgenic tobacco lines were obtained by PCR and RT-PCR confirmation. Three transgenic tobacco lines were selected for salt stress treatment and insect resistance. In the salt stress treatment, the content of malondialdehyde in 100mmol/L NaCl and 200mmol/L NaCl treatment group was significantly lower than that in wild type. Evans blue staining and cell relative activity results showed that the cell activity of transgenic tobacco was significantly higher than that of wild type. This indicated that the expression of AtCYSa gene could protect the transgenic tobacco under salt stress. Insect activity studies showed that the total weight of the larvae in the experimental group havig a significant decrease, and the larvae mortality was significantly higher than the control. These results indicate that over-expression of the AtCYSa gene in tobacco can enhance the salt tolerance and insect resistance of transgenic tobacco.

Key words: Transgenic tobacco    AtCYSa    Salt tolerance    Insect resistance
收稿日期: 2017-11-02 出版日期: 2018-05-08
ZTFLH:  Q789  
基金资助: 国家自然科学和技术重大专项(2016ZX08010001-010);国家自然科学基金(31270360)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚民
朱淑华
李佛生
张士彦
唐琳

引用本文:

姚民,朱淑华,李佛生,张士彦,唐琳. 异源表达AtCYSa基因烟草的耐盐和抗虫特性分析[J]. 中国生物工程杂志, 2018, 38(4): 8-16.

Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis. China Biotechnology, 2018, 38(4): 8-16.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180402        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I4/8

图1  拟南芥AtCYSa基因的克隆
图2  pCAMBIA1302-AtCYSa表达载体的构建与鉴定
图3  AtCYSa转基因烟草的鉴定
图4  AtCYSa转基因烟草cystatins活性检测
图5  盐胁迫下野生型烟草与AtCYSa转基因烟草MDA含量的测定
图6  野生型烟草与AtCYSa转基因烟草在200mmol/L NaCl处理下的伊文思蓝染色和细胞活性检测
图7  喂食野生型及转基因烟草叶片后黄粉虫体重的变化情况
第5天
死亡率
第10天
死亡率
第15天
死亡率
WT 0 5% 5%
AtCYSa-2 5% 10% 25%
AtCYSa-4 10% 30% 40%
AtCYSa-6 5% 15% 20%
表1  喂食野生型及转基因烟草叶片后黄粉虫死亡率统计
[1] Turk V, Bode W . The cystatins: Protein inhibitors of cysteine proteinases. FEBS Letters, 1991,285(2):213-219.
doi: 10.1016/0014-5793(91)80804-C pmid: 1855589
[2] Margis R, Reis E M, Villeret V . Structural and phylogenetic relationships among plant and animal cystatins. Archives of Biochemistry & Biophysics, 1998,359(1):24-30.
doi: 10.1006/abbi.1998.0875 pmid: 9799556
[3] Abe K, Emori Y, Kondo H , et al. Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds. Journal of Biological Chemistry, 1987,262(35):16793-16797.
pmid: 3500172
[4] Belenghi B, Acconcia F, Trovato M , et al. AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. European Journal of Biochemistry, 2003,270(12):2593-2604.
doi: 10.1046/j.1432-1033.2003.03630.x pmid: 12787025
[5] Neuteboom L W, Matsumoto K O, Christopher D A . An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening. Plant Physiology, 2009,151(151):515-527.
doi: 10.1104/pp.109.142232
[6] Hong J K, Hwang J E, Chan J L , et al. Over-expression of Chinese cabbage phytocystatin 1 retards seed germination in Arabidopsis. Plant Science, 2007,172(3):556-563.
doi: 10.1016/j.plantsci.2006.11.005
[7] Hwang J E, Hong J K, Je J H , et al. Regulation of seed germination and seedling growth by an Arabidopsis phytocystatin isoform, AtCYS6. Plant Cell Reports, 2009,28(11):1623-1632.
doi: 10.1007/s00299-009-0762-7 pmid: 19690865
[8] Benchabane M, Schlüter U, Vorster J , et al. Plant cystatins. Biochimie, 2010,92(11):1657-1666.
doi: 10.1016/j.biochi.2010.06.006
[9] Martinez M, Santamaria M E, Diazmendoza M , et al. Phytocystatins: defense proteins against phytophagous insects and acari. International Journal of Molecular Sciences, 2016,17(10):1747.
doi: 10.3390/ijms17101747 pmid: 5085774
[10] Massonneau A, Condamine P, Wisniewski J P , et al. Maize cystatins respond to developmental cues, cold stress and drought. Biochimica Et Biophysica Acta, 2005,1729(3):186-199.
doi: 10.1016/j.bbaexp.2005.05.004 pmid: 15979170
[11] Quain M D, Makgopa M E, Márquez-García B , et al. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnology Journal, 2014,12(7):903-913.
doi: 10.1111/pbi.12193 pmid: 24754628
[12] Ninkovi S, Milju?-Duki J, Radovi S , et al. Phytodecta fornicata, Brüggemann resistance mediated by oryzacystatin II proteinase inhibitor transgene. Plant Cell, Tissue and Organ Culture (PCTOC), 2007,91(3):289-294.
doi: 10.1007/s11240-007-9296-2
[13] Haq S K, Atif S M, Khan R H . Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Archives of Biochemistry & Biophysics, 2004,431(1):145-159.
doi: 10.1016/j.abb.2004.07.022 pmid: 15464737
[14] Goulet M C, Michaud D . Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. Plant Physiology, 2008,146(3):1010-1019.
doi: 10.1104/pp.108.115741
[15] Martínez M, Abraham Z, Carbonero P , et al. Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Molecular Genetics and Genomics, 2005,273(5):423-432.
doi: 10.1007/s00438-005-1147-4 pmid: 15887031
[16] Belenghi B, Acconcia F, Trovato M , et al. AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. European Journal of Biochemistry, 2003,270(12):2593-2604.
doi: 10.1046/j.1432-1033.2003.03630.x pmid: 12787025
[17] Zhang X, Liu S, Takano T . Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Molecular Biology, 2008,68(1):131-143.
doi: 10.1007/s11103-008-9357-x pmid: 18523728
[18] Hwang J E, Hong J K, Chan J L , et al. Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses. Plant Cell Reports, 2010,29(8):905-915.
doi: 10.1007/s00299-010-0876-y
[19] Labudda M, Róańska E, Szewińska J , et al. Protease activity and phytocystatin expression in Arabidopsis thaliana upon Heterodera schachtii infection. Plant Physiology & Biochemistry, 2016,109:416-429.
[20] Song C, Kim T, Chung W S , et al. The Arabidopsis phytocystatin AtCYS5 enhances seed germination and seedling growth under heat stress conditions. Molecules and Cells, 2017,40(8):577-586.
doi: 10.14348/molcells.2017.0075 pmid: 28756655
[21] Je J, Song C, Hwang J E , et al. DREB2C acts as a transcriptional activator of the thermo tolerance-related phytocystatin 4 (AtCYS4) gene. Transgenic Research, 2014,23(1):109-123.
doi: 10.1007/s11248-013-9735-2 pmid: 23868510
[22] 杜开书, 柴立英 . 黄粉虫饲养条件的研究现状与利用前景. 安徽农业科学, 2006,34(18):4646-4647.
doi: 10.3969/j.issn.0517-6611.2006.18.066
Du K S, Chai L Y . Study on condition of Tenebrio molitor L. rearing and its application prospect. Journal of Anhui Sci, 2006,34(18):4646-4647.
doi: 10.3969/j.issn.0517-6611.2006.18.066
[23] 韦玉梅, 李佳素, 周杰 , 等. 烟草叶片蛋白3种提取方法的比较研究. 湖北农业科学, 2011,50(23):4968-4970.
doi: 10.3969/j.issn.0439-8114.2011.23.064
Wei Y M, Li J S, Zhou J , et al. Comparison study on three methods for tobacco leaf protein extraction. Hubei Agricultural Sciences, 2011,50(23):4968-4970.
doi: 10.3969/j.issn.0439-8114.2011.23.064
[24] 张志良, 瞿伟菁, 李小方 . 植物生理学实验指导. 第二版. 高等教育出版社, 1990.
Zhang Z L, Qu W J, Li X F. Plant physiology experiment guidance. 2nd ed.Higher Education Press, 1990.
[25] 刘楠, 林植芳 . 用伊文思蓝染色法检测植物整体叶片的细胞活性. 植物生理学报, 2011,47(6):570-574.
Liu N, Lin Z F . Use of evans blue for testing cell viability of intact leaves of plant. Plant Physiology Journal, 2011,47(6):570-574.
[26] Li R, Wang W J, Wang W G , et al. Overexpression of a cysteine proteinase inhibitor gene from Jatropha curcas confers enhanced tolerance to salinity stress. Electronic Journal of Biotechnology, 2015,18(5):368-375.
doi: 10.1016/j.ejbt.2015.08.002
[27] Solomon M, Belenghi B, Delledonne M , et al. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. The Plant Cell, 1999,11(3):431-443.
doi: 10.1105/tpc.11.3.431 pmid: 10072402
[28] 高宝嘉, 李川, 刘军侠 . 转抗虫基因林木在害虫控制中的作用与合理利用途径. 河北农业大学学报, 2003,26(4):25-28.
doi: 10.3969/j.issn.1000-1573.2003.04.007
Gao B J, Li C, Liu J X . The effect of transgenic insect-resistant forst plant on the insect pest control and its approach of reasonable utilization. Journal of Agricultural University of Hebei, 2003,26(4):25-28.
doi: 10.3969/j.issn.1000-1573.2003.04.007
[29] Shah D M , Rommens C M T, Beachy R N. Resistance to diseases and insects in transgenic plants: progress and applications to agriculture. Trends in Biotechnology, 1995,13(9):362-368.
doi: 10.1016/S0167-7799(00)88982-9
[30] 谢先芝, 黄美娟, 吴乃虎 . 转番茄蛋白酶抑制剂Ⅱ基因烟草植株的培育及其抗虫特性分析. 自然科学进展, 2002,12(2):145-150.
doi: 10.3321/j.issn:1002-008X.2002.02.006
Xie X Z, Huang M J, Wu N H . Cultivation and insect-resistant characteristics analysis of transgenic tomato trotease inhibitors Ⅱ gene in tobacco plants. Prog Nat Sci, 2002,12(2):145-150.
doi: 10.3321/j.issn:1002-008X.2002.02.006
[31] Koiwa H, Shade R E, Zhu-Salzman K , et al. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestivecysteine proteinases (DvCALs) in the larval midgut of western cornrootworm (Diabrotica virgifera virgifera). FEBS Letters, 2000,471(1):67-70.
doi: 10.1016/S0014-5793(00)01368-5
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 高洪江, 李圣彦, 汪海, 林凤, 张春宇, 郎志宏. 苯并恶唑嗪酮类化合物功能与生物合成研究进展[J]. 中国生物工程杂志, 2017, 37(8): 104-109.
[3] 史利平, 季静, 王罡, 金超, 谢超, 杜希龙, 关春峰, 张烈, 李辰. 盐胁迫条件下玉米萜类合成相关基因的表达分析[J]. 中国生物工程杂志, 2016, 36(8): 31-37.
[4] 项诚, 王晓兵, 黄季焜. 转基因抗虫棉在中国的推广和传播途径研究[J]. 中国生物工程杂志, 2016, 36(11): 109-115.
[5] 韩双, 杨志丽, 陈丽梅. 过量表达拟南芥CAT提高烟草对气体甲醛的吸收和抗性[J]. 中国生物工程杂志, 2015, 35(5): 41-48.
[6] 刘蕾, 孙振, 宋中邦, 肖素勤, 陈丽梅. 在叶绿体中过量表达AOD1和HPS-PHI创建光合甲醇同化途径增加烟草同化甲醇能力[J]. 中国生物工程杂志, 2013, 33(12): 69-78.
[7] 苏旭, 王静, 吕莉琨, 李力, 杨东靖, 刘洪亮. 一种新的Bt杀虫基因HJC原核表达蛋白活性的鉴定[J]. 中国生物工程杂志, 2012, 32(6): 79-83.
[8] 孙彩霞, 汪莹, 吴晓菲, 陈利军, 武志杰. 转基因抗虫棉棉籽组分的代谢组学研究[J]. 中国生物工程杂志, 2012, 32(11): 35-41.
[9] 孙彩霞, 汪莹, 吴晓菲, 陈利军, 武志杰. 转基因抗虫棉棉籽组分的代谢组学研究[J]. 中国生物工程杂志, 2012, 32(11): 35-41.
[10] 黑倩, 徐源, 郭力榕, 黄继斌, 张辉, 夏涛. 过量表达AtNHXS1新基因提高烟草耐盐性的研究[J]. 中国生物工程杂志, 2011, 31(8): 24-28.
[11] 宋锋 孙敏 罗克明. 一种基于PCR技术鉴定单拷贝转基因烟草的方法[J]. 中国生物工程杂志, 2010, 30(04): 83-88.
[12] 芦丽亚 宋维 游晓慧 江婷 赵凌侠. 用无选择标记的转基因烟草表达胸腺素α1(Tα1)[J]. 中国生物工程杂志, 2010, 30(03): 1-8.
[13] 何毅敏,年洪娟,陈丽梅. 植物耐盐基因工程研究进展[J]. 中国生物工程杂志, 2009, 29(03): 100-104.
[14] 陈红梅,李昆志,陈丽梅. 植物来源抗虫基因的研究进展[J]. 中国生物工程杂志, 2008, 28(11): 116-121.
[15] 苟金霞,高栋. 纳豆激酶集成化分离技术[J]. 中国生物工程杂志, 2008, 28(1): 119-123.