Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (3): 51-61    DOI: 10.13523/j.cb.20180307
技术与方法     
SUMO蛋白酶Ulp1的高效表达纯化并通过His-SUMO标签制备scFv *
李诗洁1,2,3,杨艳坤1,2,3,刘萌1,2,3,白仲虎1,2,3*(),金坚2,4*()
1 江南大学粮食发酵工艺与技术国家工程实验室 无锡 214122
2 江南大学工业生物技术教育部重点实验室 无锡 214122
3 江南大学糖化学与生物技术教育部重点实验室 无锡 214122
4 江南大学药学院 无锡 214122
Efficient Expression of SUMO Protease Ulp1 and Used to Express and Purified scFv by His-SUMO tag
Shi-jie LI1,2,3,Yan-kun YANG1,2,3,Meng LIU1,2,3,Zhong-hu BAI1,2,3*(),Jian JIN2,4*()
1 National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
2 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School ofBiotechnology, Jiangnan University, Wuxi 214122, China
3 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
4 School of Pharmacy,Jiangnan University, Wuxi 214122, China
 全文: PDF(1140 KB)   HTML
摘要:

SUMO蛋白酶(Ulp1)是切割小分子泛素修饰(SUMO)融合蛋白获得天然N端靶蛋白的一种工具酶,具有酶切效率高、特异性好等优点。但现有市售SUMO蛋白酶Ulp1价格昂贵、操作复杂,限制了SUMO融合体系的运用。利用基因工程技术,合成基因ulp1(Leu403-Lys621),并在N端和C端加入多聚组氨酸标签(His6),构建重组表达载体psvT7-ulp1,将重组质粒转入大肠杆菌BL21(DE3)和BL21 trxB(DE3)中。经过高通量筛选技术快速确定最优的表达条件为采用BL21(DE3)作为表达宿主,转接后7h加入IPTG,IPTG的终浓度为0.1mmol/L,诱导时间为16h,最终蛋白质表达量占菌体总蛋白质量的34.5%,重组蛋白Ulp1的表达量为190mg/L,通过Ni-NTA一步纯化即可得到纯度95%以上的Ulp1。通过酶切反应,测定酶活为5.19U/μl,比酶活为5.23×10 4U/mg,是先前报道比酶活的1.87倍,通过酶活动力学分析,Ulp1的表观米氏常数Km=0.359g/L,Vm=5.10μg/(ml·min)。将SUMO融合表达体系用于单链抗体(single-chain antibody fragment,scFv)的表达,得到可溶的SUMO-scFv融合蛋白,使用表达的Ulp1进行酶切并纯化,获得纯度高于90%且N端不含多余氨基酸的scFv,操作步骤简单,显著改善了scFv在大肠杆菌中难以高效可溶性表达纯化的现状。

关键词: Ulp1Ni-NTASUMOscFv高效表达纯化    
Abstract:

SUMO protease (Ulp1) is an enzyme that cleaves small molecule ubiquitin-modified (SUMO) fusion protein into natural N-terminal protein,which has high efficiency and specificity.While the existing commercially available SUMO protease Ulp1 is expensive and complicated on operational level,limiting the wide application of SUMO fusion system. ulp1 gene (Leu403-Lys621) was synthesized,with the poly-histidine tag (His6) added to both the N-terminal and C-terminus of the SUMO protease(Ulp1).The recombinant expression vector psvT7-ulp1 was constructed before the recombinant plasmids was transformed into Escherichia coli BL21(DE3) and BL21 trxB(DE3) separately.The optimal expression conditions were as follows:Escherichia coli BL21 (DE3) was used as the expression host,and IPTG was added at 7h after the transfer.The final concentration of IPTG was 0.1mmol/L and the induction time was 16h.The final recombinant protein Ulp1 was 190mg/L accounted for 34.5% of the total protein in bacteria.Purified SUMO could be obtained through one-step Ni-NTA and the purity was higher than 95%.The enzymatic activity was 5.19U/μl with a specific enzyme activity of 5.23×10 4U/mg,which was 1.87 folds of the previously reported,according to enzyme kinetic analysis,the apparent Km of Ulp1 was 0.359g/L,and Vm was 5.10μg/(ml·min).The SUMO fusion expression system was then used to express the soluble SUMO-scFv fusion protein,with the expressed Ulp1 used for digestion and purification.The purity of scFv was higher than 90% and N-terminal natural scFv was obtained. A method was presented for preparation of Ulp1 with high enzyme activity and purity.The SUMO fusion expression system was successfully applied to the expression and purification of scFv with a simplified operation steps,which significantly improved the status of scFv soluble expression in Escherichia coli.

Key words: Ulp1    Ni-NTA    SUMO    scFv    High-performance purification
收稿日期: 2017-10-11 出版日期: 2018-04-04
ZTFLH:  Q814  
基金资助: 国家863计划(2015AA020802)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李诗洁
杨艳坤
刘萌
白仲虎
金坚

引用本文:

李诗洁,杨艳坤,刘萌,白仲虎,金坚. SUMO蛋白酶Ulp1的高效表达纯化并通过His-SUMO标签制备scFv *[J]. 中国生物工程杂志, 2018, 38(3): 51-61.

Shi-jie LI,Yan-kun YANG,Meng LIU,Zhong-hu BAI,Jian JIN. Efficient Expression of SUMO Protease Ulp1 and Used to Express and Purified scFv by His-SUMO tag. China Biotechnology, 2018, 38(3): 51-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180307        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I3/51

Primers names Primer sequences(5'-3')
His-sumo-F GGAATTCCATATGGGTCATCACCATCATCATCACG
sumo-R CGGACCGCTTTGCACCAGCT
scFv-F CAAATTCAGCTGGTGCAAAGCGG
scFv-R CCGCTCGAGTTATTTGATCTCCAGTTTGGTACCG
表1  本文所用的引物名称和序列
图1  His-sumo-scFv的合成流程
System(40μl) 1 2 3 4 5 6 7 8
SUMO-EGFP(μg) 15.57 15.57 15.57 15.57 15.57 15.57 15.57 15.57
Ulp1(ng) 0 49.555 99.11 128.843 148.665 168.487 188.309 198.22
10×SUMO Protease buffer(μl) 4 4 4 4 4 4 4 4
dd H2O 26 25.5 25 24.7 24.5 24.3 24.1 24
表2  SUMO蛋白酶酶切体系
system
(40μl)
SUMO-EGFP
(μg)
Ulp1
(ng)
缓冲液
1 15.57 198.22 蛋白质纯化上样缓冲液(20mmol/L NaH2PO4·2H2O、50mmol/L NaCl,pH=8.0)
2 15.57 198.22 蛋白质纯化洗脱缓冲液(20mmol/L NaH2PO4·2H2O、50mmol/L NaCl、250mmol 咪唑pH=8.0)
3 15.57 198.22 高盐缓冲液(250mmol/L Tris-HCl,250mmol/L NaCl,pH=8.0)
4 15.57 198.22 PBS(pH=7.4)
5 15.57 198.22 10×SUMO Protease buffer(稀释10倍)
表3  SUMO蛋白酶酶切体系
图2  融合PCR扩增基因sumo-scFv和重组质粒psvT7-ulp1酶切验证
图3  SUMO蛋白酶的诱导表达
图4  Ulp1的Western blot鉴定
图5  SUMO蛋白酶的纯化及酶活鉴定
图6  SUMO-scFv在不同诱导条件下的表达情况及SUMO-scFv纯化
图7  SUMO-scFv蛋白酶切及scFv纯化
[1] Malakhov M P, Mattern M R, Malakhov Q R , et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. Journal of Structural and Functional Genomics, 2004,5(1-2):75-86.
doi: 10.1023/B:JSFG.0000029237.70316.52 pmid: 15263846
[2] Johnson E S . Protein modification by SUMO. Annu Rev Biochem, 2004,73:355-382.
doi: 10.1146/annurev.biochem.73.011303.074118
[3] Wang H Y, Xiao Y C, Fu L J , et al. High-level expression and purification of soluble recombinant FGF21 protein by SUMO fusion in Escherichia coli. BMC Biotechnology, 2010,10:14.
doi: 10.1186/1472-6750-10-14 pmid: 1554875
[4] Su Z J, Huang Y D, Zhou Q N , et al. High-level expression and purification of human epidermal growth factor with SUMO fusion in Escherichia coli. Protein Peptide Letters, 2006,13(8):785-792.
doi: 10.2174/092986606777841280 pmid: 17073723
[5] Wu X P, Nie C J, Huang Z F , et al. Expression and purification of human keratinocyte growth factor 2 by fusion with SUMO. Mol Biotechnol, 2009,42(1):68-74.
doi: 10.1007/s12033-008-9135-7 pmid: 19104760
[6] Ronau J A, Beckmann J F, Hochstrasser M . Substrate specificity of the ubiquitin and Ubl proteases. Cell Reserch, 2016,26(4):441-456.
doi: 10.1038/cr.2016.38 pmid: 4822132
[7] Butt T R, Edavettal S C, Hall J P , et al. SUMO fusion technology for difficult-to-express proteins. Protein Expression and Purification, 2005,43(1):1-9.
doi: 10.1016/j.pep.2005.03.016 pmid: 16084395
[8] Ozaki C Y, Silveira C R, Andrade F B , et al. Single chain variable fragments produced in Escherichia coli against heat-labile and heat-stable toxins from enterotoxigenic E. coli. PLoS One, 2015,10(7):e0131484.
doi: 10.1371/journal.pone.0131484 pmid: 4496030
[9] Johdi N A, Harman R, Sanjuan I , et al. Production and binding analyses of a humanised scFv against a cryptic epitope on tumour-associated fibronectin. Protein Expression and Purification, 2013,88(1):157-163.
doi: 10.1016/j.pep.2012.12.002 pmid: 23291225
[10] Hjelm H, Sjodahl J, Sjoquist J . Immunologically active and structurally similar fragments of protein A from Staphylococcus aureus. European Journal of Biochemistry, 1975,57(2):395-403.
doi: 10.1111/j.1432-1033.1975.tb02313.x pmid: 1175649
[11] Ishihara T, Kodoya T, Yoshida H , et al. Rational methods for predicting human monoclonal antibodies retention in protein A affinity chromatography and cation exchange chromatography. Structure-based chromatography design for monoclonal antibodies. Jounal of Chromatography A, 2005,1093(1-2):126-138.
doi: 10.1016/j.chroma.2005.07.077 pmid: 16233878
[12] Roque A C, Silva C S, Taipa M A . Affinity-based methodologies and ligands for antibody purification: advances and perspectives. Jounal of Chromatography A, 2007,1160(1-2):44-55.
doi: 10.1016/j.chroma.2007.05.109 pmid: 17618635
[13] Marblestone J G, Edavetta S C, Lim Y , et al. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Science, 2006,15(1):182-189.
doi: 10.1110/ps.051812706 pmid: 16322573
[14] 刘萌, 孙杨, 杨艳坤 , 等. 人-鼠嵌合单链抗体的构建及其在大肠杆菌中的高效可溶性表达和发酵条件优化. 生物学杂志, 2016,33(6):1-6.
doi: 10.3969/j.issn.2095-1736.2016.06.001
Liu M, Sun Y, Yang Y K , et al. Chimeric single-chain antibody efficient soluble expression in Escherichia coli and optimization of fermentation conditions. Journal of Biology, 2016,33(6):1-6
doi: 10.3969/j.issn.2095-1736.2016.06.001
[15] Mossessova E, Lima C D . Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell, 2000,5(5):865-876.
doi: 10.1016/S1097-2765(00)80326-3 pmid: 10882122
[16] Lee C D, Sun H C, Hu S M , et al. An improved SUMO fusion protein system for effective production of native proteins. Protein Science, 2008,17(7):1241-1248.
doi: 10.1110/ps.035188.108 pmid: 18467498
[17] Wang X, Liu H F, Liu Y W , et al. A novel strategy for the preparation of codon-optimized truncated Ulp1 and its simplified application to cleavage the SUMO fusion protein. Protein J, 2016,35(2):115-123.
doi: 10.1007/s10930-016-9654-1 pmid: 26960810
[18] 陈兴华, 李校, 苏志坚 , 等. SUMO 蛋白酶活性片段的表达、纯化及活性测定. 中国生物工程杂志, 2007,27(3):34-41.
doi: 10.3969/j.issn.1671-8135.2007.03.006
Cheng X H, LI X, Su Z Z , et al. Expression, purification and activity determinationof SUMO proteasesactive fragment. China Biotechnology, 2007,27(3):34-41.
doi: 10.3969/j.issn.1671-8135.2007.03.006
[19] 傅俊华, 王琪, 尹杰超 , 等 . 融合蛋白 GST-Ulp1p在大肠杆菌中的高效可溶性表达及其活性鉴定. 生物工程学报, 2010,26(6):837-842.
Fu J H, Wang Q, Yin J C , et al. Expression and characterization of soluble recombinant Ulp1p with glutathione S-transferase tag in Escherichia coli. Chinese Journal of Biotechnology, 2010,26(6):837-842.
[1] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[2] 郎巧利,余琳,何麒麟,葛良鹏,杨希. 高效构建卵清白蛋白scFv噬菌体文库及其筛选 *[J]. 中国生物工程杂志, 2018, 38(11): 25-31.
[3] 刘爱平, 李诚, 刘书亮, 王小红, 陈福生. 抗黄曲霉毒素B1单链抗体在Sf9昆虫细胞中的表达与性质分析[J]. 中国生物工程杂志, 2016, 36(5): 40-45.
[4] 李翠琳, 张帆, 陈丹扬, 王昊, 郭强, 杜军. 人源TNFα的原核表达及活性测定[J]. 中国生物工程杂志, 2014, 34(8): 1-6.
[5] 陈晓静, 陈小梅, 王洋, 施慧莉, 霍克克. 人SCYL1-BP1重组蛋白的原核表达及分离纯化鉴定[J]. 中国生物工程杂志, 2012, 32(09): 1-8.
[6] 王丁丁, 苏曼曼, 胡丽莉, 袁丽颖, 孙艳, 汪炬, 颜炜群. 一种融合抗体ScFv-Fc通用表达载体的构建[J]. 中国生物工程杂志, 2011, 31(8): 110-117.
[7] 毛晓燕 乔玉玲 卢卫嘉 马瑞 赵红. 人源天然ScFv噬菌体抗体库的构建及鉴定[J]. 中国生物工程杂志, 2010, 30(05): 18-22.
[8] 冯秀萍,杜柏榕,闫东梅,赵向峰,朱迅. SUMO蛋白酶的发酵和纯化工艺的研究[J]. 中国生物工程杂志, 2009, 29(02): 81-86.
[9] 安宁,杨振,宋振,雷鸣,郭泽坤. 人SUMO-3基因原核表达及多克隆抗体制备[J]. 中国生物工程杂志, 2008, 28(5): 87-92.
[10] 陈兴华,李校堃,苏志坚,苏烨,冯娅,肖业臣,孟绢,王艳萍,黄亚东. SUMO蛋白酶活性片段的表达、纯化及活性测定[J]. 中国生物工程杂志, 2007, 27(3): 34-41.
[11] 肖业臣,秦玉侠,解佳森,刘孝菊,庞实锋,杨婉莹,李校堃. Sumo分子伴侣与富含二硫键的抗真菌肽Drs基因的融合有助于其可溶性表达[J]. 中国生物工程杂志, 2007, 27(12): 22-25.
[12] 唐晓明, 王清明, 杨俊涛, 陈吉中, 范国才, 汪思应. 大容量人天然抗体库的构建、鉴定及初步应用[J]. 中国生物工程杂志, 2005, 25(10): 17-24.
[13] 徐寒梅, 汤雅岚, 戴俊, 姚震声, 华子春. 重组抗血红素ScFv包涵体蛋白的复性及纯化研究[J]. 中国生物工程杂志, 2005, 25(02): 53-56.