Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 108-114    DOI: 10.13523/j.cb.20180113
作物雄性不育与杂种优势利用专辑     
玉米细胞质雄性不育及其育性恢复基因的研究进展
苏爱国,宋伟,王帅帅,赵久然()
北京市农林科学院玉米研究中心 玉米DNA指纹及分子育种北京市重点实验室 北京 100097
Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize
Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO()
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
 全文: PDF(569 KB)   HTML
摘要:

玉米是杂种优势利用最成功的作物之一,采用细胞质雄性不育(CMS)进行玉米杂交种生产已成为杂种优势利用的有力工具。CMS是由于细胞质和细胞核的基因表达产物的不协调而产生的不育性,可被核基因组中的恢复基因恢复。根据育性恢复专效性,玉米CMS材料主要分为T、C和S三种类型。综述了这三种类型不育及其恢复基因的研究进展,分析了在不育化制种中的应用情况。

关键词: 玉米细胞质雄性不育恢复基因杂交种生产    
Abstract:

Cytoplasmic male sterility (CMS) has become a powerful tool for hybrid production in maize,which is one of the most successful crop with heterosis utilization. CMS caused by incompatibility between cytoplasmic and nuclear gene products,and the fertility canbe restored by nuclear fertility restoration(Rf)genes. Maize has three major types of CMS, namely CMS-T, CMS-S and CMS-C, on the basis ofthe reaction to specific restorers.Advance on the CMS and Rf genes of each type is reviewed, and the application situation inmaizehybrid production is analysed.

Key words: Maize    Cytoplasmic male sterility    Fertility restoration genes    Hybrid production
收稿日期: 2017-12-01 出版日期: 2018-01-31
ZTFLH:  Q785  
基金资助: 国家科技支撑计划(2014BAD01B09);北京市科技计划课题(D151100004215001,D161100005716002);北京市农林科学院院级科技创新团队建设项目资助项目(JNKYT201603)
通讯作者: 苏爱国,宋伟     E-mail: maizezhao@126.com
作者简介: 通讯作者 赵久然, 电子信箱: maizezhao@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏爱国
宋伟
王帅帅
赵久然

引用本文:

苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.

Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO. Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize. China Biotechnology, 2018, 38(1): 108-114.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180113        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/108

图1  玉米CMS-T线粒体嵌合基因T-urf13结构
CMS类型恢复基因染色体位置作用机制参考文献
TRf13改变urf13转录本的大小和积累[19]
Rf29改变线粒体的代谢状态,缓解毒性作用[17]
Rf8通过改变urf13转录本,有部分育性恢复功能[22]
CRf48[23]
Rf55[24]
Rf-I抑制Rf5的育性恢复[25]
Rf*-A6195[26]
SRf32剪切并降解orf355-orf77转录本[27]
Rf92降低orf355-orf77的转录,易受温度因素影响[28]
表1  玉米中已鉴定与CMS育性恢复相关的重要基因
图2  玉米CMS-S质粒和线粒体基因组同源TIRs重组过程
图3  玉米CMS-S线粒体基因组R区(σ拷贝)结构示意图
[1] Laser K D, Lersten N R.Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. The Botanical Review, 1972, 38(3): 425-454.
doi: 10.1007/BF02860010
[2] Ivanov M K, Dymshits G M.Cytoplasmic male sterility and restoration of pollen fertility in higher plants. Genetika, 2007, 43(4): 451-468.
doi: 10.1134/S1022795407040023 pmid: 17555121
[3] Bohra A, Jha U C, Adhimoolam P, et al.Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep, 2016, 35(5): 967-993.
doi: 10.1007/s00299-016-1949-3 pmid: 26905724
[4] Havey M J.The Use of Cytoplasmic Male Sterility for Hybrid Seed Production. Berlin:Springer Netherlands, 2004: 623-634.
doi: 10.1007/978-1-4020-3166-3_23
[5] Forde B G, Leaver C J.Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proc Natl Acad Sci USA, 1980, 77(1): 418-422.
doi: 10.1073/pnas.77.1.418 pmid: 16592757
[6] Beckett J B.Classification of male-sterile cytoplasms in maize (Zea mays L.). Crop Sci, 1971, 11(5): 724-727.
doi: 10.1007/BF02862061
[7] 郑用琏. 若干玉米细胞质雄性不育类型(CMS)育性机理的研究. 华中农学院学报, 1982,(1): 44-68.
Zheng Y L.Study of the mechanism of the fertility about several types of cytoplasmic male-sterility in maize. Journal of Huazhong Agricultural College, 1982,(1): 44-68.
[8] 刘纪麟. 玉米育种学. 北京: 中国农业出版社, 2004: 265-267.
Liu J L. Maize Breeding.Beijing: China Agriculture Press, 2004: 265-267.
[9] Kamps T L, Mccarty D R, Chase C D.Gametophyte genetics in Zea mays L.: dominance of a restoration-of-fertility allele (Rf3) in diploid pollen. Genetics, 1996, 142(3): 1001-1007.
doi: 10.1007/BF00054630 pmid: 8849905
[10] Sofi P A, Rather A G, Wani S A.Genetic and molecular basis of cytoplasmic male sterility in maize. Communications in Biometry & Crop Science, 2007, 2(1): 49-60.
[11] Dewey R E, Iii C S L, Timothy D H. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the texas male-sterile cytoplasm. Cell, 1986, 44(3): 439-449.
doi: 10.1016/0092-8674(86)90465-4 pmid: 2417728
[12] Levings C R.The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science, 1990, 250(4983): 942-947.
doi: 10.1126/science.250.4983.942 pmid: 17746917
[13] Wise R P, Fliss A E, Pring D R, et al.urf13-T of T cytoplasm maize mitochondria encodes a 13kDa polypeptide. Plant Mol Biol, 1987, 9(2): 121-126.
doi: 10.1007/BF00015644 pmid: 24276901
[14] Dewey R E, Timothy D H, Levings C S.A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA, 1987, 84(15): 5374-5378.
doi: 10.1073/pnas.84.15.5374 pmid: 16593863
[15] Korth K L, Levings C R.Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae. Proc Natl Acad Sci USA, 1993, 90(8): 3388-3392.
doi: 10.1073/pnas.90.8.3388 pmid: 8475086
[16] Flavell R.A model for the mechanism of cytoplasmic male sterility in plants, with special reference to maize. Plant Science Letters, 1974, 3(4): 259-263.
doi: 10.1016/0304-4211(74)90096-0
[17] Cui X, Schnable P S.The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science, 1996, 1(8): 260-268.
doi: 10.1126/science.272.5266.1334 pmid: 8650543
[18] Wise R P, Gobelmanwerner K, Pei D, et al.Mitochondrial transcript processing and restoration of male fertility in T-cytoplasm maize. J Hered, 1999, 90(3): 380.
doi: 10.1093/jhered/90.3.380
[19] Wise R P, Dill C L, Schnable P S.Mutator-induced mutations of the rf1 nuclear fertility restorer of T-cytoplasm maize alter the accumulation of T-urf13 mitochondrial transcripts. Genetics, 1996, 143(3): 1383-1394.
doi: 10.1007/BF00120227
[20] Touzet P.Is rf2 a restorer gene of CMS-T in maize. Trends Plant Sci, 2002, 7(10): 434.
doi: 10.1016/S1360-1385(02)02346-4
[21] Budar F, Touzet P, De Paepe R.The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica, 2003, 117(1): 3-16.
doi: 10.1023/A:1022381016145
[22] Dill C L, Wise R P, Schnable P S.Rf8 and Rf* mediate unique T-urf13-transcript accumulation, revealing a conserved motif associated with RNA processing and restoration of pollen fertility in T-cytoplasm maize. Genetics, 1997, 147(3): 1367.
doi: 10.1046/j.1365-2443.1997.1550353.x
[23] Sisco P H.Duplications complicate genetic mapping of Rf4, a restorer gene for CMS-C cytoplasmic male sterility in corn. Crop Sci, 1991, 31(5): 1263-1266.
doi: 10.2135/cropsci1991.0011183X003100050036x
[24] Tang J H, Liu Z H, Chen C W, et al.Mapping major restore genes for C-type cytoplasmic male sterility in maize with SSR marker. J Integr Agr, 2002, 1(3): 269-273.
[25] Hu Y M, Tang J H, Yang H, et al.Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for Cms-C in maize (Zea mays L.). Theor Appl Genet, 2006, 113(2): 357-360.
doi: 10.1007/s00122-006-0302-6 pmid: 16791701
[26] Liu Y M, Zhao Z F, Lu Y L, et al.A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize (Zea mays L.). Peer J, 2016, 4(4): e2719.
doi: 10.7717/peerj.2719 pmid: 27904810
[27] Zabala G, Gabay-Laughnan S, Laughnan J R.The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics, 1997, 147(2): 847-860.
[28] Gabay-Laughnan S, Kuzmin EV, Monroe J, et al.Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize. Genetics, 2009, 182(1): 91-103.
doi: 10.1534/genetics.108.099895 pmid: 19255365
[29] Allen J O, Fauron C M, Minx P, et al.Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics, 2007, 177(2): 1173-1192.
doi: 10.1534/genetics.107.073312 pmid: 17660568
[30] Dewey R E, Timothy D H, Rd LC.Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet, 1991, 20(6): 475.
doi: 10.1007/BF00334775 pmid: 1664299
[31] Wang J, Cao M J, Pan G T, et al.RNA editing of mitochondrial functional genes atp6 and cox2 in maize (Zea mays L.). Mitochondrion, 2009, 9(5): 364-369.
doi: 10.1016/j.mito.2009.07.005 pmid: 19666144
[32] Ren R, Nagel B A, Kumpatla S P, et al.Maize Cytoplasmic Male Sterility(CMS) C-type Restored Rf4 Gene, Molecular Markers and Their Use: Uuropean, 15191795.2. 2016-08-17.[2017-08-19].
[33] Josephson L M.Genetics and inheritance of fertility restoration of the sterility cytoplasm in corn. Corn Sorghum, 1978,(33): 48-59.
[34] Kohls S, Stamp P, Knaak C, et al.QTL involved in the partial restoration of male fertility of C-type cytoplasmic male sterility in maize. Theor Appl Genet, 2011, 123(2): 327-338.
doi: 10.1007/s00122-011-1586-8 pmid: 21479555
[35] Huang L, Xiang J, Liu J, et al.Expression characterization of genes for CMS-C in maize. Protoplasma, 2012, 249(4): 1119-1127.
doi: 10.1007/s00709-011-0358-2 pmid: 22160189
[36] Lu Y L, Liu Y, Jing W, et al.Variation and patterns of DNA methylation in maize C-type CMS lines and their maintainers. J Plant Biochem Biot, 2010, 19(1): 43-50.
doi: 10.1007/BF03323434
[37] Pring D R, Levings C S, Hu W W, et al.Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA, 1977, 74(7): 2904-2908.
doi: 10.1073/pnas.74.7.2904 pmid: 16592420
[38] Schardl C L, Lonsdale D M, Pring D R, et al.Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature, 1984, 310(5975): 292-296.
doi: 10.1038/310292a0
[39] Matera J T, Monroe J, Smelser W, et al.Unique changes in mitochondrial genomes associated with reversions of S-type cytoplasmic male sterility in maizemar. PLoS One, 2011, 6(8): e23405.
doi: 10.1371/journal.pone.0023405 pmid: 21858103
[40] Xiao H, Zhang F, Zheng Y.The 5' stem-loop and its role in mRNA stability in maize S cytoplasmic male sterility. Plant J, 2006, 47(6): 864-872.
doi: 10.1111/j.1365-313X.2006.02838.x pmid: 16961731
[41] Kamps T L, Chase C D.RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theor Appl Genet, 1997, 95(4): 525-531.
doi: 10.1007/s001220050593
[42] Xu X B, Liu Z X, Zhang D F, et al.Isolation and analysis of rice Rf1-orthologus PPR genes co-segregating with Rf3 in maize. Plant Mol Biol Rep, 2009, 27(4): 511-517.
doi: 10.1007/s11105-009-0105-4
[43] Wen L, Chase C D.Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize. Curr Genet, 1999, 35(5): 521-526.
doi: 10.1016/j.ces.2010.02.035 pmid: 10369959
[44] 秦雅婷, 赵衍鑫, 岳兵, 等. CCACA碱基序列是玉米CMS-S线粒体orf355-orf77转录本剪切识别位点. 中国生物化学与分子生物学报. 2013, 29(6): 555-562.
Qin Y T, Zhao Y X, Yue B, et al.Identification of sequence CCACA as a recognition motif of mitochondrial transcripts orf355-orf77 cleavage sites in CMS-S maize. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(6): 555-562.
[45] Zhang Z F, Wang Y, Zheng Y L.AFLP and PCR-based markers linked to Rf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Mol Genet Genomics, 2006, 276(2): 162-169.
doi: 10.1007/s00438-006-0131-y pmid: 16705419
[46] Weider C, Stamp P, Christov N, et al.Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci, 2009, 49(1): 77-84.
doi: 10.2135/cropsci2007.12.0694
[47] Bueckmann H, Thiele K, Schiemann J.Influence of soil moisture and air temperature on the stability of cytoplasmic male sterility (CMS) in maize (Zea mays L.). Agricultural Sciences, 2016, 7(2): 70-81.
doi: 10.4236/as.2016.72007
[48] Feng Y, Zheng Q, Song H, et al.Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theor Appl Genet, 2015, 128(11): 2341-2350.
doi: 10.1007/s00122-015-2589-7 pmid: 26220224
[49] Tie S, Xia J, Qiu F, et al.Genome-wide analysis of maize cytoplasmic male sterility-S based on QTL mapping. Plant Mol Biol Rep, 2006, 24(1): 71-80.
doi: 10.1007/BF02914047
[50] Gabaylaughnan S, Chase C D, Ortega V M, et al.Molecular-genetic characterization of CMS-S restorer-of-fertility alleles identified in Mexican maize and teosinte. Genetics, 2004, 166(2): 959.
doi: 10.1534/genetics.166.2.959
[51] Su A G, Song W, Xing J F, et al.Identification of genes potentially associated with the fertility instability of S-type cytoplasmic male sterility in maize via bulked segregant RNA-Seq. PLoS One, 2016, 11(9): e163489.
doi: 10.1371/journal.pone.0163489 pmid: 27669430
[52] Stamp P, Chowchong S, Menzi M, et al.Increase in the yield of cytoplasmic male sterile maize revisited. Crop Sci, 2000, 40(6): 1586-1587.
doi: 10.2135/cropsci2000.4061586x
[53] Levings C R.Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell, 1993, 5(10): 1285-1290.
doi: 10.2307/3869781 pmid: 12271028
[54] Rhoads D M, Rd LC, Siedow J N.URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J Bioenerg Biomembr, 1995, 27(4): 437-445.
doi: 10.1007/BF02110006 pmid: 8595979
[55] La T.The southern corn leaf blight epidemic. Science, 1971, 173(3991): 39.
doi: 10.1126/science.171.3976.1113 pmid: 17747311
[56] Schnable P S, Wise R P.The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci, 1998, 3(5): 175-180.
doi: 10.1016/S1360-1385(98)01235-7
[57] 祁显涛, 杨海龙, 谢传晓. 玉米雄性不育机制及其产业化应用研究进展. 作物杂志, 2014,(6): 1-9.
Qi X T, Yang H L, Xie C X. Advance on biological mechanism of male sterility in maize and Its’ perspective in seed industry, 2014,(6): 1-9.
[58] Tracy W F, Everett H L, Gracen V E.Inheritance, environmental effects, and partial male fertility in C-type CMS in a maize inbred. J Hered, 1991, 82(4): 343-346.
doi: 10.1007/BF00212315
[59] Duvick D N.Cytoplasmic pollen sterility in corn. Adv Genet, 1965, 13: 1-56.
doi: 10.1016/S0065-2660(08)60046-2
[60] Weider C, Stamp P, Christov N, et al.Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci, 2009, 49(1): 77-84.
doi: 10.2135/cropsci2007.12.0694
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[9] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[10] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[11] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[12] 石子,宋伟,赵久然. 雄性不育在作物杂种优势中的应用途径分析[J]. 中国生物工程杂志, 2018, 38(1): 126-134.
[13] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[14] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.
[15] 柳双双,吴锁伟,饶力群,万向元. 玉米核雄性不育的分子机制研究与应用分析[J]. 中国生物工程杂志, 2018, 38(1): 100-107.