Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 88-99    DOI: 10.13523/j.cb.20180111
作物雄性不育与杂种优势利用专辑     
玉米花药发育的细胞生物学与分子遗传学的研究方法
田有辉1,2,万向元1,2()
1 北京科技大学生物前沿技术与应用研究中心 化学与生物工程学院 生物农业研究院 北京 100024
2 北京首佳利华科技有限公司主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192
Cytobiology and Molecular Genetics Research Methods on Maize Anther Development
You-hui TIAN1,2,Xiang-yuan WAN1,2()
1 Advanced Biotechnology and Application Research Center, Institute of Biology and Agriculture, School of Chemistry and Biological Engineering,University of Science and Technology Beijing, Beijing 100024, China
2 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
 全文: PDF(1262 KB)   HTML
摘要:

雄性不育技术在玉米杂种优势利用和杂交种生产中发挥着重要作用,玉米花药发育和雄性不育的细胞生物学与分子遗传学研究是雄性不育技术利用的前提和基础。玉米花药发育是一个复杂的生物学过程,需要孢子体基因与配子体基因的协同表达调控。从玉米花药的形态结构、花药发育时期的划分、花药败育类型、花药发育的细胞学研究方法、花药发育的组学研究方法、花药发育分子遗传学研究方法等方面进行综述,以期为玉米核不育机制研究与雄性不育技术产业化应用提供方法学指导。

关键词: 玉米花药雄性不育杂种优势利用    
Abstract:

Male sterile materials play important roles both in maize heterosis utilization and hybrids production, which are based on cytobiology and molecular genetics research on maize anther development.Anther development of maize is sophisticated, which need cooperative regulation of sporophyte and gametophyte. Here, the research progresses in maize anther morphology, maize anther development division, male sterility classification, cytobiology research methods, various omics research methods and molecular genetics methods on anther development are summarized, which will provide methodological clues for understanding the mechanism underlying maize anther development and industrialized utilization of male sterile materials.

Key words: Maize    Anther    Male sterility    Heterosis utilization
收稿日期: 2017-12-01 出版日期: 2018-01-31
ZTFLH:  Q785  
基金资助: 国家自然科学基金(31771875);国家“万人计划”科技创新领军人才特殊支持经费;中央高校基本科研业务费专项资金(06500060);国家重点研发计划(2017YFD0102001, 2017YFD0101200);国家国际科技合作项目(2015DFA30640);国家科技支撑计划(2014BAD01B02);北京市科技计划资助项目(Z161100000916013)
作者简介: 通讯作者 万向元,电子信箱: wanxiangyuan@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田有辉
万向元

引用本文:

田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.

You-hui TIAN,Xiang-yuan WAN. Cytobiology and Molecular Genetics Research Methods on Maize Anther Development. China Biotechnology, 2018, 38(1): 88-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180111        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/88

图1  玉米雄穗和小花形态
图2  玉米花药的形态
图3  花药发育早期世系假说模式图[34]
图4  玉米花药发育14个时期的细胞学观察
时期形态特征花药长度(μm)表达基因
1花药原基起始,由L1、L2、L3三层细胞构成30~120
2L2层细胞分化形成AR细胞120~180MSCA1[26]
3AR细胞分裂形成PPL180~280
4细胞分裂继续进行,形成EN和SPC,垂周分裂使花药小室增大280~500MAC1[4]
5SPL分裂,形成ML和T500~700
6花药小室增大,AR发育成熟形成MMC1 000~1 200
7MC与绒毡层接触,周围胼胝质降解ML变薄1 200~1 500
8a减数第一次分裂完成,形成二分体;绒毡层染色质浓缩1 500~2 000MS9[27]MS23[28]MS32[29]
8b减数第二次分裂结束,形成由胼胝质包裹的四分体2 000~2 500MS8[30]
9胼胝质降解,小孢子释放2 500~3 000MS26[31]MS45[32]APV1[25]IPE1[24]
10小孢子内部形成中央大液泡,与绒毡层接触,绒毡层进一步降解3 000~3 500
11小孢子内液泡收缩,细胞核经过一次有丝分裂形成营养核和生殖核3 500~5 000
12生殖核在经过一次有丝分裂,形成三核花粉粒;绒毡层彻底降解5 000~5 500
13花粉粒继续进行淀粉积累,呈圆球状5 500~6 000
14花药开裂,散粉5 500~6 000
表1  玉米花药发育的细胞学变化过程[10]
[1] Bhatt A M, Canales C, Dickinson H G.Plant meiosis: the means to 1N. Trends in Plant Science, 2001, 6(3): 114-121.
doi: 10.1016/S1360-1385(00)01861-6 pmid: 11239610
[2] Ma H.Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Review of Plant Biology, 2005, 56(1): 393-434.
doi: 10.1146/annurev.arplant.55.031903.141717
[3] Ma J, David S S, John F, et al.Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biology, 2008, 9(12): R181.
doi: 10.1186/gb-2008-9-12-r181 pmid: 19099579
[4] Wang C J, Nan G L, Kelliher T., et al.Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139(14): 2594-2603.
doi: 10.1242/dev.077891 pmid: 22696296
[5] Kelliher T, Walbot V.Emergence and patterning of the five cell types of the Zea mays anther locule. Developmental Biology, 2011, 350(1): 32-49.
doi: 10.1016/j.ydbio.2010.11.005 pmid: 3024885
[6] Goldberg R B, Beals T P, Sanders P M.Anther development: basic principles and practical applications. Plant Cell, 1993, 243(5): 1217-1229.
doi: 10.1105/tpc.5.10.1217 pmid: 8281038
[7] McCormick S. Male gametophyte development. Plant Cell, 1993, 5(10): 1265-1275.
doi: 10.1105/tpc.5.10.1265
[8] Scott R J, Spielman M, Dickinson H G.Stamen structure and function. Plant Cell, 2004, 16(suppl1): S46-60.
doi: 10.1105/tpc.017012
[9] 吴锁伟,方才臣,邓联武,等. 玉米隐性核雄性不育基因研究进展及其育种应用途径分析. 分子植物育种,2012, 10(1): 1001-1011.
doi: 10.5376/mpb.cn.2012.10.0001
Wu S W, Fang C C, Deng L W, et al.Research progress on maize recessive genic male sterility gene and its utilization strategies in maize breeding program. Molecular Plant Breeding, 2012, 10(1): 1001-1011.
doi: 10.5376/mpb.cn.2012.10.0001
[10] Kelliher T, Egger R L, Zhang H, et al.Unresolved issues in pre-meiotic anther development. Frontiers in Plant Science, 2014, 5(347): 1-9.
doi: 10.3389/fpls.2014.00347 pmid: 4104404
[11] Irish V F.Petal and stamen development. Current Topics in Developmental Biology, 1999, 41(1): 133-161.
[12] Cacharrn J, Saedler H F, Theissen G.Expression of MADS box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and the lower floret of each spikelet. Development Genes and Evolution, 1999, 209(0949-944X): 411-420.
doi: 10.1007/s004270050271 pmid: 10370124
[13] Patrick S, Georg F, Antony B, et al.Perception of free cutin monomers by plant cells. Plant Journal,1996, 10(2): 331-341.
doi: 10.1046/j.1365-313X.1996.10020331.x
[14] Fauth M, Schweizer P, Buchala A, et al.Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors. Plant Physiology, 1998, 117(4): 1373-1380.
doi: 10.1104/pp.117.4.1373
[15] Zhu Q H, Ramm K, Shivakkumar R, et al.The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiology, 2004, 135(2): 1514-1525.
doi: 10.1104/pp.104.041459 pmid: 15247409
[16] Sheridan W F, Golubeva E A, Abrhamova L I, et al.The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics, 1999, 153(2): 933-941.
doi: 10.1016/j.bpj.2015.08.011 pmid: 10511568
[17] Yang S L, Jiang L, Puah C S, et al.Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with excess microsporocytes1/extra sporogenous cells. Plant Physiology, 2005, 139(1): 186-191.
doi: 10.1104/pp.105.063529
[18] Mizuno S, Osakabe Y, Maruyama K, et al.Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant Journal, 2007, 50(5): 751-766.
doi: 10.1111/j.1365-313X.2007.03083.x pmid: 17419837
[19] Skibbe D S, Wang X J, Borsuk L A, et al.Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death. Journal of Genetics and Genomics, 2008, 35(10): 603-616.
doi: 10.1016/S1673-8527(08)60081-8 pmid: 18937917
[20] Wang D, Oses-Prieto J A, Li K H, et al. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. Plant Journal, 2010, 63(6): 939-951.
doi: 10.1111/j.1365-313X.2010.04294.x pmid: 20626649
[21] Warmke H E, Lee S J.Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. Journal of Heredity, 1977, 68(4): 213-222.
doi: 10.1093/oxfordjournals.jhered.a108817
[22] Zhang D, Wilson Z A.Stamen specification and anther development in rice. Chinese Science Bulletin,2009, 54(14): 2342-2353.
doi: 10.1007/s11434-009-0348-3
[23] Zhang D, Luo X, Zhu L.Cytological analysis and genetic control of rice anther development. Journal of Genetics and Genomics, 2011, 38(9): 379-390.
doi: 10.1016/j.jgg.2011.08.001 pmid: 21930097
[24] Chen X Y, Zhang H, Sun H Y, et al.IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiology, 2016, 173(1): 307-325.
doi: 10.1104/pp.16.00629 pmid: 28049856
[25] Somaratne Y, Tian Y, Zhang H, et al.ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant Journal, 2017, 90(1): 96-110.
doi: 10.1111/tpj.13476 pmid: 28078801
[26] Chaubal R, Anderson J R, Trimnell M R, et al.The transformation of anthers in the msca1 mutant of maize. Planta, 2003, 216(5): 778-788.
doi: 10.1007/s00425-002-0929-8 pmid: 12624765
[27] Albertsen M, Fox T, Leonard A, et al.Cloning and Use of the ms9 gene from Maize: US, US20160024520A1. 2016-01-08.[2017-08-19]. Cloning and Use of the ms9 gene from Maize: US, US20160024520A1. 2016-01-08.[2017-08-19]. .
[28] Nan G L, Zhai J, Arikit S, et al.MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144(1): 163-172.
doi: 10.1242/dev.140673 pmid: 27913638
[29] Moon J, Skibbe D, Timofejeva L, et al.Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant Journal, 2013, 76(4), 592-602.
doi: 10.1111/tpj.12318 pmid: 24033746
[30] Wang D, Skibbe D S, Walbot V.Maize Male sterile 8(Ms8), a putative-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reproduction, 2013, 26(4): 329-338.
doi: 10.1007/s00497-013-0230-y pmid: 23887707
[31] Albertsen M C, Fox T, Huffman G, et al.Nucleotide Sequences Mediated Male Fertility and Method of Using Same: United States, US2012/0005792 A1. 2012-01-05. [2017-08-19].[2017-08-19]..
[32] Albertsen M C, Beach L R, Howard J, et al.Nucleotide Sequences Mediated Male Fertility and Method of Using Same: United States, US005478369A.1995-01-13.[2017-08-19].Nucleotide Sequences Mediated Male Fertility and Method of Using Same: United States, US005478369A.1995-01-13.[2017-08-19]..
[33] Bedinger P A, Fowler J E.The Maize Male Gametophyte//Bennetzen J L, Hake. Handbook of Maize: Its Biology. New York:Springer Science and Business Media,2009: 58-78.
[34] Zhang D B, Yang L.Specification of tapetum and microsporocyte cells within the anther. Current Opinion in Plant Biology, 2014, 17(1): 49-55.
doi: 10.1016/j.pbi.2013.11.001 pmid: 24507494
[35] Kiesselbach T A.The Structure and Reproduction of Corn. New York:Cold Spring Harbor Laboratory Press,1999: 43-46.
[36] Sheridan W F, Golubeva E A, Abrhamova L I, et al.The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics, 1999, 153(2): 933-941.
doi: 10.1016/j.bpj.2015.08.011 pmid: 10511568
[37] Timofejeva L, Skibbe D S, Lee S, et al.Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3, 2013, 3(2): 231-249.
doi: 10.1534/g3.112.004465 pmid: 3564984
[38] Barbara A A, David R L, Pietro C, et al.Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 2000, 5(3): 569-579.
doi: 10.1016/S1097-2765(00)80450-5 pmid: 10882141
[39] Bartlett M E, Williams S K, Taylor Z, et al.The maize PI/GLO ortholog Zmm16/sterile tassel silky ear1 interacts with the zygomorphy and sex determination pathways in flower development.Plant Cell, 2015, 27(11): 3081-3098.
doi: 10.1105/tpc.15.00679
[40] Raj C, Carla Z, Mary R T, et al.Two male-sterile mutants of Zea mays with an extra cell division in anther wall. American Journal of Botany,2000, 87(8): 1193-1201.
doi: 10.2307/2656657 pmid: 10948005
[41] Kunst L, Samuels A L.Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 2003, 42(1): 51-80.
doi: 10.1021/ac800514m pmid: 12467640
[42] Yeats T H, Rose J K.The formation and function of plant cuticles. Plant Physiology, 2013, 163(1): 5-20.
doi: 10.1104/pp.113.222737 pmid: 23893170
[43] Kim S S, Douglas C J.Sporopollenin monomer biosynthesis in arabidopsis. Journal of Plant Biology, 2013, 56(1): 1-6.
doi: 10.1007/s12374-012-0385-3
[44] Li H, Pinot F, Sauveplane V, et al.Cytochrome P450 family member CYP704B2 catalyzes the -hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell, 2010, 22(1): 173-190.
doi: 10.1105/tpc.109.070326
[45] Shi J, Tan H, Yu X H,et al.Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23(6): 2225-2246.
doi: 10.1105/tpc.111.087528 pmid: 21705642
[46] Ma J, Morrow D J, Fernandes J, et al.Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biology, 2006, 7(3): R22-R22.
doi: 10.1186/gb-2006-7-3-r22 pmid: 16542496
[47] Wijeratne A J.Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant Journal , 2007, 52(1): 14-29.
doi: 10.1111/j.1365-313X.2007.03217.x pmid: 17666023
[48] Skibbe D S, Fernandes J F, Medzihradszky K F, et al.Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers. Plant Journal, 2009, 59(4): 622-633.
doi: 10.1111/j.1365-313X.2009.03901.x pmid: 19453454
[49] Ma J, Duncan D, Morrow D J, et al.Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types.Plant Journal, 2007, 50(4): 637-648.
doi: 10.1111/j.1365-313X.2007.03074.x pmid: 17419846
[50] Zhang H, Egger R L, Kelliher T, et al.Transcriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3, 2014, 4(6): 993-1010.
doi: 10.1534/g3.113.009738 pmid: 24939185
[51] Goodacre R .Metabolic profiling: pathways in discovery. Drug Discovery Today, 2004, 9(6): 260-261.
doi: 10.1016/S1359-6446(04)03027-2 pmid: 15003243
[52] D’Auria JC, Gershenzon J. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Current Opinion in Plant Biology, 2005, 8(3): 308-316.
doi: 10.1016/j.pbi.2005.03.012
[53] Pichersky E, Gang DR.Genetics and biochemistry of secondary metabolites: an evolutionary perspective. Trends in Plant Science, 2000, 5(10): 439-445.
doi: 10.1016/S1360-1385(00)01741-6 pmid: 11044721
[54] Bernard A, Joubes J.Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Progress in Lipid Research,2013, 52(1): 110-129.
doi: 10.1016/j.plipres.2012.10.002 pmid: 23103356
[55] Heredia A.Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta,2003, 1620(1-3): 1-7.
doi: 10.1016/S0304-4165(02)00510-X pmid: 12595066
[56] Kim S S, Douglas C J.Sporopollenin monomer biosynthesis in arabidopsis. Journal of Plant Biology, 2013, 56(1): 1-6.
doi: 10.1007/s12374-012-0385-3
[57] Rohde A.Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism.Plant Cell, 2004, 16(10): 2749-2771.
doi: 10.1105/tpc.104.023705
[58] Zhai J, Zhang H, Arikit S, et al.Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proceedings of the National Academy of Sciences of the USA, 2105, 112(10): 3146-3151.
[59] Fan Y, Yang J Y, Mathioni S M,et al.PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proceedings of the National Academy of Sciences of the USA, 2016, 113(52): 15144-15149.
doi: 10.1073/pnas.1619159114 pmid: 27965387
[60] Cuperus J T, Montgomery T A, Fahlgren N, et al.Identification of MIR390a precursor processing-defective mutants in Arabidopsis by directgenome sequencing. Proceedings of the National Academy of Sciences of the USA, 2014, 107(1): 466-471.
doi: 10.1073/pnas.0913203107
[61] Ariizumi T, Toriyama K.Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology. 2011, 62(1): 437-460.
doi: 10.1146/annurev-arplant-042809-112312 pmid: 21275644
[62] Quilichini T D, Grienenberger E, Douglas C J.The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. Phytochemistry, 2015, 113(1): 170-182.
doi: 10.1016/j.phytochem.2014.05.002 pmid: 24906292
[63] Shi J, Cui M, Yang L, et al.Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science, 2015, 20(11): 741-753.
doi: 10.1016/j.tplants.2015.07.010 pmid: 26442683
[64] 王多祥,祝万万,袁政,等. 水稻雄性发育功能基因的发掘及应用. 生命科学,2016, 28(10): 1180-1188.
Wang D X, Zhu W W, Yuan Z, et al.Functional research of rice male reproduction and its utilization in breeding. Chinese Bulletin of Life Sciences, 2016, 28(10): 1180-1188.
[65] Liang Z, Zhang K, Chen K, et al.Targeted mutagenesis in ea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 2014, 41(2): 63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457
[66] Kang D, Wang C, Xu Q, et al.Characterization of maize male sterile 2 mutant by phenotypic and RNA sequencing analyses. Plant Breeding, 2017, 136(3): 319-330.
doi: 10.1111/pbr.12468
[67] Zhang D F, Wu S W, An X L, et al.Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnology Journal, 2017. DOI:10.1111/pbi.12786.
doi: 10.1111/pbi.12786 pmid: 28678349
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[9] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[10] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[11] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[12] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[13] 付志远,秦永田,汤继华. 主要作物光温敏核雄性不育基因的研究进展与应用*[J]. 中国生物工程杂志, 2018, 38(1): 115-125.
[14] 石子,宋伟,赵久然. 雄性不育在作物杂种优势中的应用途径分析[J]. 中国生物工程杂志, 2018, 38(1): 126-134.
[15] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.