Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 84-89    DOI: 10.13523/j.cb.20171212
综述     
氧化石墨烯荧光性能在生物医学领域的应用*
肖欢,宁宗()
广西医科大学第一附属医院 南宁 530021
The Application of Oxidized Graphene Fluorescence in Biomedical Field
Huan XIAO,Zong NING()
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
 全文: PDF(487 KB)   HTML
摘要:

石墨烯(graphene)作为一种新兴产物在生物医学领域的应用越来越广泛,氧化石墨烯(graphene oxide, GO)作为石墨烯的重要衍生物之一,得益于其异源的电学结构,因而在一定波长范围内可以产生荧光。正是这一性能使得GO在生物医学领域有着巨大的潜力,主要介绍了近年来GO的荧光性能在分子检测、疾病诊断、细胞成像等方面的应用,并展望了其发展前景。

关键词: 氧化石墨烯荧光性能分子检测疾病诊断细胞成像    
Abstract:

Graphene (graphene) as a new product in the field of biomedical application is more and more broad, oxidized graphene (graphene oxide, GO) as one of the important derivatives of graphene, due to its different source of electrical structure, can produce fluorescent within a certain wavelength range.This performance is what makes the GO has great potential in biomedical field. The application of the fluorescence properties of GO in molecular detection, disease diagnosis and cell imaging in recent years and prospects of its development were mainly introduced.

Key words: Graphene oxide    Fluorescence properties    Molecular detection    Disease diagnosis    Cell imaging
收稿日期: 2017-09-18 出版日期: 2017-12-16
ZTFLH:  Q819  
基金资助: * 国家自然科学基金资助项目(81560309)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
肖欢
宁宗

引用本文:

肖欢,宁宗. 氧化石墨烯荧光性能在生物医学领域的应用*[J]. 中国生物工程杂志, 2017, 37(12): 84-89.

Huan XIAO,Zong NING. The Application of Oxidized Graphene Fluorescence in Biomedical Field. China Biotechnology, 2017, 37(12): 84-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171212        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/84

  Fal.1 Summary of GO fluorescence properties in biomedical applications
[1] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films. Science, 2004,306(5696):666-669.
doi: 10.1126/science.1102896 pmid: 15499015
[2] Geim A K, Novoselov K S.The rise of graphene. Nature Materials, 2007,6(3):183-191.
doi: 10.1038/nmat1849
[3] Joe D J, Hwang J, Johnson C, et al.Surface functionalized graphene biosensor on sapphire for cancer cell detection. J Nanosci Nanotechnol, 2016,16(1):144-151.
doi: 10.1166/jnn.2016.12042 pmid: 27398439
[4] 焦洋, 刘恒,塔拉提百克·买买提居马, 等. 石墨烯及其衍生物在骨科的应用. 中国生物工程杂志. 2017,37(8):78-83.
Jiao Y, Liu H, Talatibaike·Maimaitijuma, et al.The application of graphene and derivatives in orthopedics. China Biotechnology,2017,37( 8) : 78-83.
[5] Shi J, Guo J, Bai G, et al.A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity. Biosens Bioelectron, 2015,65(3):238-244.
doi: 10.1016/j.bios.2014.10.050 pmid: 25461164
[6] Rana V K, Choi M C, Kong J Y, et al.Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromolecular Materials and Engineering, 2011,296(2):131-140.
doi: 10.1002/mame.201000307
[7] Loh K P, Bao Q, Eda G, et al.Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010,2(12):1015-1024.
doi: 10.1038/nchem.907 pmid: 21107364
[8] Huang X, Qi X, Boey F, et al.Graphene-based composites. Chemical Society Reviews, 2012,41(2):666-686.
doi: 10.1039/C1CS15078B
[9] Cui Y, Kim S N, Naik R R, et al.Biomimetic peptide nanosensors. Accounts of Chemical Research, 2012,45(5):696-704.
doi: 10.1021/ar2002057
[10] Xiang X, Han L, Zhang Z, et al.Graphene oxide-based fluorescent sensor for sensitive turn-on detection of sinapine. Spectrochimica acta Part A, Molecular and Biomolecular Spectroscopy, 2017,174(3):75-79.
doi: 10.1016/j.saa.2016.11.025 pmid: 27886646
[11] Li Z J, Li C, Zheng M G, et al.Functionalized nano-graphene oxide particles for targeted fluorescence imaging and photothermy of glioma U251 cells. International Journal of Clinical and Experimental Medicine, 2015,8(2):1844-1852.
pmid: 25932112
[12] Mao X, Liu T, Bi J, et al.The synthesis of pillar[5]arene functionalized graphene as a fluorescent probe for paraquat in living cells and mice. Chem Commun (Camb), 2016,52(23):4385-4388.
doi: 10.1039/c6cc00949b pmid: 26925878
[13] Mei Q, Chen J, Zhao J, et al.Atomic oxygen tailored graphene oxide nanosheets emissions for multicolor cellular imaging. ACS Appl Mater Interfaces, 2016,8(11):7390-7395.
doi: 10.1021/acsami.6b00791 pmid: 26927323
[14] Si J, Volkan-Kacso S, Eltom A, et al.Heterogeneous fluorescence intermittency in single layer reduced graphene oxide. Nano Letters, 2015,15(7):4317-4321.
doi: 10.1021/acs.nanolett.5b00191 pmid: 26057349
[15] Eng A Y, Chua C K, Pumera M.Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications. Physical Chemistry Chemical Physics, 2016,18(14):9673-9681.
doi: 10.1039/c5cp07254a pmid: 26998537
[16] Arvand M, Mirroshandel A A.Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Biosens Bioelectron, 2017,96(10):324-331.
doi: 10.1016/j.bios.2017.05.028
[17] Seraj S, Rouhani S. A fluorescence quenching study of naphthalimide dye by graphene: mechanism and thermodynamic properties. Journal of Fluorescence, 2017,27(5):1877-1883.
[18] Sun X, Liu B, Li S, Li F.Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2016,161(5):33-38.
doi: 10.1016/j.saa.2016.02.018 pmid: 26945122
[19] Xi G, Wang X, Chen T.A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2. International Journal of Nanomedicine, 2016,11(4):1537-1547.
doi: 10.2147/IJN.S102517 pmid: 4841432
[20] Adachi N, Yoshinari M, Suzuki E, et al.Oligo(p-phenylene ethynylene) with cyanoacrylate terminal groups and graphene composite as fluorescent chemical sensor for cysteine. Journal of Fluorescence, 2017,27(4):1449-1456.
doi: 10.1007/s10895-017-2084-4 pmid: 28391541
[21] Mei Q, Zhang K, Guan G, et al.Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem Commun (Camb), 2010,46(39):7319-7321.
doi: 10.1039/c0cc02374d pmid: 20830357
[22] Ma Y, Chen L, Zhang L, et al.A sensitive strategy for the fluorescence detection of DNA methyltransferase activity based on the graphene oxide platform and T7 exonuclease-assisted cyclic signal amplification. The Analyst, 2015,140(12):4076-4082.
doi: 10.1039/c5an00417a pmid: 25882858
[23] Lu C H, Li J, Liu J J, et al.Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the “nanoquencher”. Chemistry, 2010,16(16):4889-4894.
doi: 10.1002/chem.200903071 pmid: 20301144
[24] He S, Song B, Li D, et al.A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Advanced Functional Materials, 2010,20(3):453-459.
doi: 10.1002/adfm.200901639
[25] Zhao X H, Kong R M, Zhang X B, et al.Graphene-DNAzyme based biosensor for amplified fluorescence "turn-on" detection of Pb2+ with a high selectivity. Analytical Chemistry, 2011,83(13):5062-5066.
doi: 10.1021/ac200843x pmid: 21639104
[26] Li F, Feng Y, Zhao C, et al.A sensitive graphene oxide-DNA based sensing platform for fluorescence "turn-on" detection of bleomycin. Chem Commun (Camb), 2012,48(1):127-129.
doi: 10.1039/c1cc15694b pmid: 22051737
[27] Liu M, Zhang Q, Zhao H, et al.Controllable oxidative DNA cleavage-dependent regulation of graphene/DNA interaction. Chem Commun (Camb), 2011,47(14):4084-4086.
doi: 10.1039/c1cc00107h pmid: 21359331
[28] Li F, Huang Y, Yang Q, et al.A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale, 2010,2(6):1021-1026.
doi: 10.1039/b9nr00401g pmid: 20648302
[29] Zhang Y, Liu Y, Zhen S J, et al.Graphene oxide as an efficient signal-to-background enhancer for DNA detection with a long range resonance energy transfer strategy. Chem Commun (Camb), 2011,47(42):11718-11720.
doi: 10.1039/c1cc14491j pmid: 21952343
[30] Pang S, Gao Y, Li Y, et al.A novel sensing strategy for the detection of Staphylococcus aureus DNA by using a graphene oxide-based fluorescent probe. The Analyst, 2013,138(9):2749-2754.
doi: 10.1039/c3an36642a pmid: 23505623
[31] Hong C, Baek A, Hah S S, et al.Fluorometric detection of microRNA using isothermal gene amplification and graphene oxide. Analytical Chemistry, 2016,88(6):2999-3003.
doi: 10.1021/acs.analchem.6b00046 pmid: 26902732
[32] He Y, Xing X, Tang H, et al.Graphene oxide-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA. Small, 2013,9(12):2097-2101.
doi: 10.1002/smll.201202739 pmid: 23362224
[33] Lin J M, Chen Q, Wei W.Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosens Bioelectron, 2011,26(11):4497-4502.
doi: 10.1016/j.bios.2011.05.009 pmid: 21621405
[34] Chang H, Tang L, Wang Y, et al.Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry, 2010,82(6):2341-2346.
doi: 10.1021/ac9025384 pmid: 20180560
[35] Li Z, Zhu W, Zhao Z, et al.A ligation-triggered highly sensitive fluorescent assay of adenosine triphosphate based on graphene oxide. The Analyst, 2012,137(23):5506-5509.
doi: 10.1039/c2an36223f pmid: 23082315
[36] Zhang H, Huang H, Lin Z, et al.A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide-DNA interaction. Analytical and Bioanalytical Chemistry, 2014,406(27):6925-6932.
doi: 10.1007/s00216-014-7758-z pmid: 24830395
[37] Attwood P V, Wallace J C.Chemical and catalytic mechanisms of carboxyl transfer reactions in biotin-dependent enzymes. Accounts of Chemical Research, 2002,35(2):113-120.
doi: 10.1002/chin.200221291 pmid: 11851389
[38] Livaniou E, Costopoulou D, Vassiliadou I, et al.Analytical techniques for determining biotin. J Chromatogr A, 2000,881(1-2):331-343.
doi: 10.1016/S0021-9673(00)00118-7 pmid: 10905717
[39] Mock D M, Quirk J G, Mock N I.Marginal biotin deficiency during normal pregnancy. The American Journal of Clinical Nutrition, 2002,75(2):295-299.
doi: 10.1051/rnd:2002016 pmid: 1426254
[40] Zhang H, Li Y, Su X.A small-molecule-linked DNA-graphene oxide-based fluorescence-sensing system for detection of biotin. Analytical Biochemistry, 2013,442(2):172-177.
doi: 10.1016/j.ab.2013.07.036 pmid: 23921170
[41] Chen J L, Yan X P, Meng K, et al.Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Analytical Chemistry, 2011,83(22):8787-8793.
doi: 10.1021/ac2023537 pmid: 21978023
[42] Yue Z, Lv P, Yue H, et al.Inducible graphene oxide probe for high-specific tumor diagnosis. Chem Commun (Camb), 2013,49(37):3902-3904.
doi: 10.1039/c3cc40499d pmid: 23549293
[43] Feng D, Song Y, Shi W,et al.Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe. Analytical Chemistry, 2013,85(13):6530-6535.
doi: 10.1021/ac401377n pmid: 23751075
[44] Gao Y S, Zhu X F, Yang T T, et al.Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers. Microchimica Acta, 2015,182(11-12):2027-2035.
doi: 10.1007/s00604-015-1537-1
[45] Gu Y, Ju C, Li Y, et al.Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor. Biosens Bioelectron, 2015,66(4):24-31.
doi: 10.1016/j.bios.2014.10.070 pmid: 25460877
[46] Sun X, Liu Z, Welsher K, et al.Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008,1(3):203-212.
doi: 10.1007/s12274-008-8021-8 pmid: 20216934
[47] Li J L, Bao H C, Hou X L, et al.Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angewandte Chemie, 2012,51(8):1830-1834.
doi: 10.1002/ange.201106102 pmid: 22247035
[48] Rong P, Yang K, Srivastan A, et al.Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics, 2014,4(3):229-239.
doi: 10.7150/thno.8070 pmid: 3915087
[1] 吕雪芹, 金柯, 刘家恒, 崔世修, 李江华, 堵国成, 刘龙. 工业模式微生物膜有序性的活细胞定量分析 *[J]. 中国生物工程杂志, 2021, 41(1): 20-29.
[2] 卓丽霞, 王莹, 张春萍, 段静, 张亚妮. α-溶血素的表达及其纳米孔的制备[J]. 中国生物工程杂志, 2017, 37(1): 53-57.
[3] 赵华 赵进 董银卯 何聪芬 钟秦. 转TaDREB基因提高芦荟抗低温特性的研究[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[4] 唐娜,沈志强,管宇,王金良. 蛋白质检测新技术——邻位连接技术及初步应用[J]. 中国生物工程杂志, 2009, 29(08): 113-118.
[5] 王艳丽 叶兴国 董芳 陶丽莉 乔卫华 李晓璐. 高羊茅和黑麦草农杆菌介导转化体系的研究[J]. 中国生物工程杂志, 2007, 27(1): 22-27.
[6] 杨蓉, 谢文章, 张亮, 朱小山, 王国青, 董赫, 李志明, 陈恳, 陈德朴, 程京. 生物芯片研究进展[J]. 中国生物工程杂志, 1999, 19(4): 33-38.
[7] WilliamC.Nierman, 周泰冲. 国家卫生署(NIH)的人类DNA探针资源库和资料库:美国标准培养物保藏中心(ATCC)对人类遗传学的新作用[J]. 中国生物工程杂志, 1987, 7(4): 62-64.