Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 14-20    DOI: 10.13523/j.cb.20171203
研究报告     
重组不可分型流感嗜血杆菌E蛋白与血浆脂蛋白(a)的相互作用
王瑜1,4,刘治1,4,白文成2,4,许丽萍3,韩润林2,4()
1 内蒙古农业大学生命科学学院 呼和浩特 010018
2 内蒙古农业大学兽医学院 呼和浩特 010018
3 内蒙古医科大学基础医学院 呼和浩特 010059
4 内蒙古农业大学血浆脂蛋白免疫学研究中心 呼和浩特 010018
The Interaction between Plasma Lipoprotein(a) and Recombinant Protein E Derived from Nontypeable Haemophilus influenza
Yu WANG1,4,Zhi LIU1,4,Wen-cheng BAI2,4,Li-ping XU3,Run-lin HAN2,4()
1 College of Life Science, Inner Mongolia Agriculture University, Hohhot 010018, China
2 College of Veterinary Medicine, Inner Mongolia Agriculture University, Hohhot 010018, China
3 College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010018, China
4 Research Center of Plasma Lipoprotein Immunology, Inner Mongolia Agriculture University, Hohhot 010018, China
 全文: PDF(693 KB)   HTML
摘要: 目的

E蛋白(Protein E, PE)是不可分型流感嗜血杆菌(Nontypeable Haemophilus influenza, NTHi)表面的一种纤溶酶原(plasminogen, Plg)受体,其C末端含有两个赖氨酸残基。NTHi可通过其表面的PE与Plg结合,从而利用机体的纤溶系统深层入侵宿主。基于脂蛋白(a)[Lipoprotein(a), Lp(a)]中载脂蛋白(a)[Apolipoprotein(a), Apo(a)]与Plg高度的同源性,拟证明Lp(a)是否会与重组表达的PE(rPE)结合。

方法

原核表达并纯化rPE及敲除C末端两个赖氨酸残基的rPEΔKK,密度梯度离心结合阴离子交换层析分离人血浆Lp(a),通过ELISA、Pull down、Western blot等方法研究rPE与Lp(a)的相互作用。

结果

rPE与Lp(a)结合,但不与LDL结合,且rPEΔKK与Lp(a)的结合能力明显低于rPE;赖氨酸类似物6-氨基乙酸(EACA)能有效抑制rPE与Lp(a)的结合;Lp(a)对rPE与Plg的结合具有微弱的抑制作用。

结论

rPE能够与Lp(a)结合,其中rPE的C末端赖氨酸残基和Apo(a)的赖氨酸结合位点(lysine binding sites, LBS)是rPE与Lp(a)结合的主要位点。

关键词: 不可分型流感嗜血杆菌PE蛋白脂蛋白(a)纤溶酶原赖氨酸结合位点    
Abstract: Objective:

Protein E (PE), with two lysine residues at its C-terminus, is a plasminogen (Plg) receptor on the surface of nontypeable Haemophilus influenza (NTHi). NTHi can recruit Plg on the cell surface by PE and utilize host fibrinolytic system to achieve its immune invasion. Based on the high homology of Plg and Apolipoprotein(a) [Apo(a)] of Lipoprotein(a) [Lp(a)], Lp(a) was supposed to bind to PE.

Methods:

The recombinant PE (rPE) and C-terminal lysine residues-deleted variant (rPEΔKK) were obtained by prokaryotic expression and further purified. Lp(a) was isolated and purified from human plasma by KBr density gradient centrifugation followed by Q SepharoseTM Fast Flow ion exchange chromatography. The interaction between rPE and Lp(a) was investigated by enzyme-linked immunosorbent assay(ELISA) and Pull down followed by Western blot.

Results:

The results indicated that rPE could bind to Lp(a) but not to LDL, and the interaction was significantly inhibited by EACA. The binding capacity of rPEΔKK to Lp(a) was obviously lower than that of rPE. In addition, Lp(a) could inhibit the binding of rPE to Plg slightly.

Conclusion:

In overall, Lp(a) could bind to rPE and the C-terminal lysine residues of rPE and the lysine binding site(LBS) of Apo(a) was responsible for this interaction.

Key words: Nontypeable    Haemophilus influenza    Protein E    Lipoprotein(a)    Plasminogen    Lysine binding sites
收稿日期: 2017-08-15 出版日期: 2017-12-16
ZTFLH:  R378.4  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王瑜
刘治
白文成
许丽萍
韩润林

引用本文:

王瑜,刘治,白文成,许丽萍,韩润林. 重组不可分型流感嗜血杆菌E蛋白与血浆脂蛋白(a)的相互作用[J]. 中国生物工程杂志, 2017, 37(12): 14-20.

Yu WANG,Zhi LIU,Wen-cheng BAI,Li-ping XU,Run-lin HAN. The Interaction between Plasma Lipoprotein(a) and Recombinant Protein E Derived from Nontypeable Haemophilus influenza. China Biotechnology, 2017, 37(12): 14-20.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171203        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/14

PrimerSequence (5'-3')Restrictive enzymes
rPEF: CGAGACCGCGGTCCCGAATTCAAGGCTAAACAAAATGATGTGAAGCEcoRⅠ
R: CCCCTGCAGGTCGACCTCGAGTTATTTTTTATCAACTGAAAATGCTTCXholⅠ
rPEΔKKF: CGAGACCGCGGTCCCGAATTCAAGGCTAAACAAAATGATGTGAAGCEcoRⅠ
R: CCCCTGCAGGTCGACCTCGAGTTAATCAACTGAAAATGCTTCACCAXholⅠ
表1  引物列表
图1  SDS-PAGE和Western blot检测Lp(a)纯度
图2  ELISA检测rPE、rPEΔKK与Lp(a)的结合
图3  Pull down结合Western blot 检测rPE、rPEΔKK与Lp(a)的结合
图4  ELISA检测rPE与LDL的结合
图5  EACA抑制rPE与Lp(a)的结合
图6  ELISA检测rPE、rPEΔKK与Plg的结合
图7  Lp(a)对rPE与Plg结合的抑制
[1] Duell B L, Su Y C, Riesbeck K.Host-pathogen interactions of nontypeable Haemophilus influenzae: from commensal to pathogen. Febs Letters, 2016, 590(21): 3840-3853.
doi: 10.1002/1873-3468.12351 pmid: 27508518
[2] Bhattacharya S, Ploplis V A, Castellino F J.Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. Journal of Biomedicine and Biotechnology, 2012, 2012: 482096.
doi: 10.1155/2012/482096 pmid: 3477821
[3] Lahteenmaki K, Kuusela P, Korhonen T K.Bacterial plasminogen activators and receptors. Fems Microbiology Reviews, 2001, 25(5): 531-552.
doi: 10.1111/j.1574-6976.2001.tb00590.x pmid: 11742690
[4] Sun Z, Chen Y H, Wang P, et al.The blockage of the high-affinity lysine binding sites of plasminogen by EACA significantly inhibits prourokinase-induced plasminogen activation. Biochimica et Biophysica Acta, 2002, 1596(2): 182-192.
doi: 10.1016/S0167-4838(02)00233-9 pmid: 12007600
[5] Sjostrom I, Grondahl H, Falk G, et al.Purification and characterisation of a plasminogen- binding protein from Haemophilus influenzae. Sequence determination reveals identity with aspartase. Biochimica Et Biophysica Acta, 1997, 1324(2): 182-190.
doi: 10.1016/S0005-2736(96)00218-0 pmid: 9092705
[6] Barthel D, Singh B, Riesbeck K, et al.Haemophilus influenzae uses the surface protein E to acquire human plasminogen and to evade innate immunity. Journal of Immunology, 2012, 188(1): 379-385.
doi: 10.4049/jimmunol.1101927 pmid: 22124123
[7] Su Y C, Jalalvand F, Morgelin M, et al.Haemophilus influenzae acquires vitronectin via the ubiquitous protein F to subvert host innate immunity. Molecular Microbiology, 2013, 87(6): 1245-1266.
doi: 10.1111/mmi.12164 pmid: 23387957
[8] Su Y C, Mukherjee O, Singh B, et al.Haemophilus influenzae P4 interacts with extracellular matrix proteins promoting adhesion and serum resistance. Journal of Infectious Diseases, 2016, 213(2): 314-323.
doi: 10.1093/infdis/jiv374 pmid: 26153407
[9] Hallstrom T, Blom A M, Zipfel P F, et al.Nontypeable Haemophilus influenzae protein E binds vitronectin and is important for serum resistance. Journal of Immunology, 2009, 183(4): 2593-2601.
doi: 10.4049/jimmunol.0803226 pmid: 19635912
[10] Berg K. Lp(a) lipoprotein: an overview. Chemistry and Physics of Lipids, 1994, 67-68(1): 9-16.
[11] Mclean J W, Tomlinson J E, Kuang W J, et al.cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature, 1987, 330(6144): 132-137.
doi: 10.1038/330132a0
[12] Han R L. Plasma lipoproteins are important components of the immune system, 2010, 54(4): 246-253.
[13] Li W L, Xu L P, Zhang Y K, et al.Lipoprotein (a) binds to recombinant nontypeable Haemophilus influenzae aspartase. American Journal of Clinical and Experimental Medicine, 2015, 3(5): 314-321.
doi: 10.11648/j.ajcem.20150305.31
[14] Albers J J, Hazzard W R.Immunochemical quantification of human plasma Lp(a) lipoprotein. Lipids, 1974, 9(1): 15-26.
doi: 10.1007/BF02533209 pmid: 4359204
[15] Romagnuolo R, Marcovina S M, Boffa M B, et al.Inhibition of plasminogen activation by apo(a): role of carboxyl-terminal lysines and identification of inhibitory domains in apo(a). Journal of Lipid Research, 2014, 55(4): 625-634.
doi: 10.1194/jlr.M036566 pmid: 3966697
[16] Schmidt K, Noureen A, Kronenberg F, et al.Structure, function, and genetics of lipoprotein(a). Journal of Lipid Research, 2016, 57(8): 1339-1359.
doi: 10.1194/jlr.R067314 pmid: 27074913
[17] 许颖, 纪智星, 韩润林. 重组金黄色葡萄球菌次黄嘌呤单核苷酸脱氢酶与脂蛋白(a)的相互作用. 微生物学通报, 2011,38(9): 1405-1411.
Xu Y, Ji Z X, Han R L.The interaction between lipoprotein(a) and recombinant inosine 5'-monophosphate dehydrogenase derived from Staphylococcus aureus. Microbiology China, 2011,38(9): 1405-1411.
[18] Xu L P, Bai W C, Ji Z X, et al.Lipoprotein (a) binds to C-terminal lysine residues of recombinant enolase derived from group A streptococcus. Clinical and Experimental Medicine, 2015, 3(5): 327-331.
doi: 10.11648/j.ajcem.20150305.33
[19] 代霄燕, 许丽萍, 白文成, 等. 重组A群链球菌三磷酸甘油醛脱氢酶与脂蛋白(a)的相互作用. 内蒙古农业大学学报(自然科学版), 2011,32(3): 27-31.
Dai X Y, Xu L P, Bai W C, et al.The interaction between lipoprotein(a) and recombinant glyceraldehyde-3-phosphate dehydrogenase derived from group A streptococcus. Journal of Inner Mongolia Agricultural University, 2011,32(3): 27-31.
[20] Liu E, Li W L, Han R L.The interaction between recombinant protein F derived from nontypeable Haemophilus influenzae and lipoprotein(a). American Journal of Clinical and Experimental Medicine, 2015, 4(3): 338-343.
doi: 10.11648/j.ajcem.20150306.11
[21] 纪智星, 白文成. 人脂蛋白(a)与金黄色葡萄球菌重组α-烯醇化酶的相互作用. 内蒙古农业大学学报(自然科学版), 2017,(2): 1-6.
Ji Z X, Bai W C.The interaction between human lipoprotein(a) and recombinant α-enolase derived from Staphylococcus aureus. Journal of Inner Mongolia Agricultural, 2017,(2): 1-6.
[22] 王洋, 李文龙, 刘恩, 等. 铜绿假单胞菌二氢硫辛酸酰胺脱氢酶的重组表达及其与脂蛋白(a)的相互作用. 微生物学通报, 2017, 44(1): 172-177.
doi: 10.13344/j.microbiol.china.160093
Wang Y, Li W L, Liu E, et al.The interaction between lipoprotein(a) and recombinant dihydrolipoamide dehydrogenase derived from Pseudomonas aeruginosa. Microbiology China, 2017,44(1): 172-177.
doi: 10.13344/j.microbiol.china.160093
[1] 陈武 莫炜 张艳玲 宋钢 宋后燕. 重组人纤溶酶原基因的酵母表达、产物纯化及鉴定[J]. 中国生物工程杂志, 2009, 29(10): 18-22.
[2] 黄红艳, 孙强, 李庆霞, 刘家云, 王凯, 鲍炜, 贾林涛, 王成济, 杨安钢. 针对uPA的siRNA对人乳腺癌细胞侵袭的抑制作用[J]. 中国生物工程杂志, 2005, 25(6): 31-35.
[3] 安靓, 李振林, 黄伟民, 黄吴建, 李进. 乳腺注射法表达人组织型纤溶酶原激活剂的研究[J]. 中国生物工程杂志, 2004, 24(11): 42-45.
[4] 牛勃, 陈显久, 张东昌, 解军, 张悦红, 杨琦, 程牛亮. 人纤溶酶原饼环区5(hPK5)基因的分泌型表达[J]. 中国生物工程杂志, 2003, 23(9): 91-95.
[5] 任启生, 陈黄实, 宋新荣, 李伯松. 刺桐胰蛋白酶抑制剂基因的构建及表达研究[J]. 中国生物工程杂志, 2003, 23(7): 102-104.
[6] 李世崇, 胥照平, 胡显文, 张正光, 高丽华, 肖成祖. 重组人尿型纤溶酶原激活剂的中试生产与性质研究[J]. 中国生物工程杂志, 2003, 23(3): 55-58.
[7] 董晓明, 刘明河, 朱圣庚. 新型溶栓剂葡萄球菌激酶的研究进展[J]. 中国生物工程杂志, 2000, 20(6): 5-8.
[8] 苏勇, 易进华, 李军, 谭靖伟, 王海波. 人组织性纤溶酶原激活物衍生物在大肠杆菌硫氧化还原蛋白融合表达系统中的表达[J]. 中国生物工程杂志, 2000, 20(6): 63-67.
[9] 孙天霄, 徐长法. 溶栓剂的蛋白质工程[J]. 中国生物工程杂志, 1996, 16(2): 43-49.
[10] 房德兴, 殷震. 组织型纤溶酶原激活因子的分子生物学研究进展[J]. 中国生物工程杂志, 1993, 13(1): 1-4.
[11] 张震元. 组织型纤溶酶原激活剂(TPA)[J]. 中国生物工程杂志, 1991, 11(5): 54-55.
[12] 李秀珍, 方继明. 新型溶血栓剂——低分子量单链尿激酶[J]. 中国生物工程杂志, 1991, 11(2): 26-28.
[13] 程新波, 黄翠芬. 第二代组织纤溶酶原激活剂[J]. 中国生物工程杂志, 1988, 8(6): 30-31.