Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (9): 112-117    DOI: 10.13523/j.cb.20170915
综述     
干细胞3D支架的研究进展
徐竹, 诸葛启钏, 黄李洁
温州医科大学附属第一医院 温州 325000
Advances in Stem Cell 3D Scaffolds
XU Zhu, ZHUGE Qi-chuan, HUANG Li-jie
Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
 全文: PDF(449 KB)   HTML
摘要: 干细胞是一类具有无限增殖潜能,可自我更新的细胞,不同的培养或诱导条件下能够分化成为不同的细胞类型。目前,随着医学治疗手段及干细胞研究的不断发展,发现干细胞可应用于很多疾病的治疗,干细胞临床应用日益广泛,逐渐成为科研工作者研究的热点。然而干细胞移植进入生物体后繁殖效率很低,无法达到需求的量,因此如何对干细胞在生物体外进行大量培养扩增、在生物体内如何更稳定地增殖分化成为迫切需要解决的难题。当前干细胞最主要的培养方法仍是2D培养,2D培养无法模拟体内的3D微环境,繁殖效率较低,正是由于2D培养局限性太多,促使国内外学者对3D培养技术和3D支架材料进行深入探索,并取得了大量成果。对3D培养技术在干细胞中的发展与应用进行概述和展望。
关键词: 干细胞3D培养3D微环境支架    
Abstract: Stem cells are characterized by the capacity of self-renewing and umlimited proliferation and differentiation. They can differentiate into specialized cells under different culture or induced conditions. At present, with the development of medical treatment and stem cell research, it is found that stem cells can be used for the treatment of many diseases. The clinical application of stem cells is in a vast need. However, stem cell transplantation efficiency is very low in vivo. It is still need to figure out the method of stem cells expansion, stable proliferation and differentiation. Currently,the main culture method of the stem cells is still 2D culture. 2D culture can not simulate the 3D microenvironment in the body, and the reproductive efficiency is low. There are emerging results to overcome the limition of 2D culture method by the experts. Here the development and application of 3D culture technologies of stem cells were reviewed.
Key words: Stem cell    3D culture    3D microenvironment    Scaffold
收稿日期: 2016-11-26 出版日期: 2017-09-25
ZTFLH:  Q813  
基金资助: 温州市公益性科技计划项目(Y20150042)、浙江省医药卫生重大科技计划(WKJ2013-2-022)、浙江省医药卫生科技计划(2016RCA022)资助项目
通讯作者: 黄李洁     E-mail: lijiehuangwy@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
诸葛启钏
黄李洁
徐竹

引用本文:

徐竹, 诸葛启钏, 黄李洁. 干细胞3D支架的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 112-117.

XU Zhu, ZHUGE Qi-chuan, HUANG Li-jie. Advances in Stem Cell 3D Scaffolds. China Biotechnology, 2017, 37(9): 112-117.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170915        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I9/112

[1] Marlow R, Dontu G. Modeling the breast cancer bone metastatic niche in complex three-dimensional cocultures. Methods in Molecular Biology,2015, 1293:1213.
[2] Anton D, Burckel H, Josset E, et al. Three-dimensional cell culture:a breakthrough in vivo. International Journal of Molecular Sciences, 2015, 16(3):5517-5527.
[3] Elliott N T, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. Journal of Pharmaceutical Sciences, 2011, 100(1):59-74.
[4] Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers, 2008,89(5):338-344.
[5] Guan J, Zhu Z, Zhao R C, et al. Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials, 2013, 34(24):5937-5946.
[6] Laurent T C, Lanrent U B, FraserJ R. Functions of hyaluronan. Annals of the Rheumatic Diseases, 1995, 54(5):429-432.
[7] Lam J, Lowry W E, Carmichael S T, et al. Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Advanced Functional Materials, 2014, 24(44):7053-7062.
[8] Banihashemi M, Mohkam M, Safari A, et al. Optimization of three dimensional culturing of the HepG2 cell line in fibrin scaffold. Hepatitis Monthly, 2015, 15(3):e22731.
[9] Bensai D W, Triffitt J T, Blanchat C, et al. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials, 2003, 24(14):2497-2502.
[10] Dhandayuthapni B, Krishnan U M, Sethuraman S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2010, 94(1):264-272.
[11] Chen Z, Zhao M, Liu K, et al. Novel chitosan hydrogel formed by ethylene glycol chitosan, 1,6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold:in vitro and in vivo evaluation. Journal of Materials Science Materials in Medicine, 2014, 25(8):1903-1913.
[12] Malafaya P B, Oliveira J T, Reis R L. The effect of insulin-loaded chitosan particle-aggregated scaffolds in chondrogenic differentiation. Tissue Engineering Part A, 2010, 16(2):735-747.
[13] Charbord P, Livne E, Gross G, et al. Human bone marrow mesenchymal stem cells:a systematic reappraisal via the genostem experience. Stem Cell Reviews & Reports, 2011, 7(1):32-42.
[14] Hu J, Ma P X. Nano-fibrous tissue engineering scaffolds capable of growth factor delivery. Pharmaceutical Research, 2011, 28(6):1273-1281.
[15] Llorens E. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Materials Science & Engineering C Materials for Biological Applications, 2015, 50:74-84.
[16] Kim Y C, Kim Y H, Kim J W, et al. Transplantation of mesenchymal stem cells for acute spinal cord Injury in rats:comparative study between intralesional injection and scaffold based transplantation. Journal of Korean Medical Science, 2016, 31(9):1373-1382.
[17] Ouyang A, Ng R, Yang S T. Long-term culturing of undifferentiated embryonic stem cells in conditioned media and three-dimensional fibrous matrices without extracellular matrix coating. Stem Cells, 2007, 25(2):447-454.
[18] Prewitz M, Seib F P, Pompe T, et al. Polymeric biomaterials for stem cell bioengineering. Macromolecular Rapid Communications, 2012, 33(17):1420-1431.
[19] 南文滨, 陈红丽, 刘瑞, 等. 胶原-纤维蛋白胶膜复合脐带间充质干细胞修复小鼠全层皮肤创面的实验研究. 中华损伤与修复杂志,2015,10(1):50-55. Nan W B,Chen H L,Liu R,et al.Umbilical cord mesenchymal stem cell combined with collagen-fibrin double layer membrane accelerates wound healing.Chinese Journal of Injury Repair and Wound Healing,2015,10(1):50-55.
[20] Fan Z, Feng Z, Tao L, et al. Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds. International Journal of Biological Macromolecules, 2014, 65(5):516-523.
[21] 姚海军, 赵阳, 周哲,等. 聚己内酯/壳聚糖与聚己内酯/聚乳酸支架与人脂肪来源干细胞的生物相容性研究. 中国男科学杂志, 2015, 29(8):18-22. Yao H J,Zhao Y,Zhou Z,et al.Biocompatibilty analysis of human adipose-derived stem cells and Polycaprolactone/chitosan or polycaprolactone/polylactide scaffold.Chinese Journal of Andrology,2015, 29(8):18-22.
[22] Sambit S, Siew L T, Hong G J C. PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2010, 95(1):19-28.
[23] Mousavi S H, Abroun S, Soleimani M, et al. Expansion of human cord blood hematopoietic stem/progenitor cells in three-dimensional Nanoscaffold coated with Fibronectin. Int J Hematol Oncol Stem Cell Res,2015, 9(2):72-79.
[24] Bhuiyan D B, Middleton J C, Tannenbaum R, et al. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. Journal of Biomaterials Science Polymer Edition, 2016,27(11):1-33.
[25] 张宇, 高思丹, 李俊玲. 纳米材料在组织修复及再生中的应用. 生物技术世界, 2015,(7):227-228. Zhang Y,Gao S D,Li J L.Application of nanomaterials in tissue restoration and regeneration.Biotech World,2015,(7):227-228.
[26] Yang S, Leong K F, Du Z, et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 2001, 7(6):679-689.
[27] Yang S, Leong K F, Du Z, et al. The design of scaffolds for use in tissue engineering. Part Ⅱ. Rapid prototyping techniques. Tissue Engineering, 2002, 8(1):1-11.
[28] Jessup J M, Frantz M, Sonmez-alpan E, et al. Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line. In Vitro Cellular & Developmental Biology-Animal, 2000, 36(6):367-373.
[29] Vunjak-novakovic G, Freed L E, Biron R J, et al. Effects of mixing on the composition and morphology of tissue-engineered cartilage. Aiche Journal, 2004, 42(3):850-860.
[30] Pathi P, Ma T, Locke B R. Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cells. Biotechnology & Bioengineering, 2005, 89(7):743-758.
[1] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[4] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[5] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[6] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[7] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[8] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[9] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[10] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[11] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[12] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[13] 邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.
[14] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[15] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.