Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (9): 41-47    DOI: 10.13523/j.cb.20170906
研究报告     
鲁氏酵母胞内海藻糖积累过程的代谢特征分析
刘翠翠1, 胡梦蝶1, 王志1, 代俊1, 姚娟2, 李沛2, 李志军2, 陈雄1, 李欣1
1. 教育部发酵工程重点实验室湖北省工业发酵协同创新中心湖北工业大学 武汉 430068;
2. 湖北安琪酵母股份有限公司 宜昌 443003
Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii
LIU Cui-cui1, HU Meng-die1, WANG Zhi1, DAI Jun1, YAO Juan2, LI Pei2, LI Zhi-jun2, CHEN Xiong1, LI Xin1
1. Key Labortory of Fermentation Engineering(Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
2. Hubei Angel Yeast Limited by Share Ltd, Yichang 443003, China
 全文: PDF(837 KB)   HTML
摘要: 海藻糖合成是微生物对抗环境逆境的一种重要途径。研究10L发酵罐中的分批、分批补料及分批补料控温三种不同的海藻糖发酵调控策略下酱油风味形成微生物鲁氏酵母CCTCC M2013310的代谢特征。色谱结果表明,乳酸、丙酮酸和α-酮戊二酸受到不同发酵调控模式的显著影响,但谷氨酸和谷氨酰胺总含量在三种发酵调控模式间却无显著差异。这些结果表明,细胞还原力平衡途径和碳氮调控代谢均对胞内海藻糖的积累产生影响。研究结果为鲁氏酵母CCTCC M2013310的高浓度内源性海藻糖细胞代谢工程改造提供了新思路。
关键词: 发酵调控海藻糖氨基酸有机酸鲁氏酵母    
Abstract: Trehalose synthesis is an important pathway to protect cell against environmental stress. The metabolic characteristics of Zygosaccharomyces rouxii CCTCC M2013310 under three different trehalose fermentation control strategies included batch, fed-batch and fed-batch conbined control temperature in 10L fermentation tank are studied. The results from chromatographic analysis show that lactic acid, pyruvate and α-ketoglutaric acid are significantly affected by different fermentation modes. However, there is no significant difference between the total content of glutamic acid and glutamine in the three fermentation control process. These results show that the accumulation of intracellular trehalose is effected by the cell reduction force balance pathway and the metabolic regulation of carbon and nitrogen metabolism. The results provid a new idea for the metabolic engineering of Z. rouxii CCTCC M2013310 to make the high concentration of endogenous trehalose yeast cell.
Key words: Trehalose    Zygosaccharomyces rouxii    Organic acid    Fermentation regulation    Amino acid
收稿日期: 2017-03-22 出版日期: 2017-09-25
ZTFLH:  Q493.4  
基金资助: 湖北省科技厅重大专项基金(2015ACA052)、湖北省教育厅基金(6101-12131)资助项目
通讯作者: 李欣     E-mail: 51545530@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘翠翠
王志
姚娟
李志军
陈雄
李欣
代俊
李沛
胡梦蝶

引用本文:

刘翠翠, 胡梦蝶, 王志, 代俊, 姚娟, 李沛, 李志军, 陈雄, 李欣. 鲁氏酵母胞内海藻糖积累过程的代谢特征分析[J]. 中国生物工程杂志, 2017, 37(9): 41-47.

LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii. China Biotechnology, 2017, 37(9): 41-47.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170906        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I9/41

[1] 陈彬, 鲁绯, 王夫杰, 等. 耐盐酵母菌对发酵酱油风味作用及其应用的研究进展. 中国酿造, 2010, 29(6):1-3. Chen B, Lu F, Wang F J, et al. Effect of salt-tolerant yeast on the flavor of soy sauce and its research progress. China Brewing, 2010, 29(6):1-3.
[2] 胡梦蝶, 陈雄, 李欣, 等. 不同胁迫条件对鲁氏酵母胞内海藻糖积累的影响研究. 食品工业科技, 2016, 37(11):130-133. Hu M D, Chen X, Li X,et al. Intracellular trehalose metabolism characteristics of Zygosaccharomyces rouxii under different stresses. Science and Tecnology of Food Industry, 2016,37(11):130-133.
[3] Argüelles J C. Physiological roles of trehalose in bacteria and yeasts:a comparative analysis. Archives of Microbiology, 2000, 174(4):217-224.
[4] 王碧莹, 孙溪, 肖冬光. 内源与(或)外源海藻糖对面包酵母耐冷冻性的影响研究. 酿酒科技, 2015,258(12):4-6, 11. Wang B Y, Sun X, Xiao D G. Effects of endogenous and/or exogenous trehalose on freezing-tolerance of baker's yeast. Brewing Technology, 2015,258(12):4-6, 11.
[5] 方华, 李灏. 海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用. 中国生物工程杂志, 2014, 34(6):84-89. Fang H, Li H. The Roles of trehalose and heat shock proteins for enhancing ethanol tolerance of Saccharomyces cerevisiae. China Biotechnology, 2014, 34(6):84-89.
[6] 谭海刚, 董健, 王光路, 等. 中性海藻糖酶基因缺失对面包酵母耐冷冻性的影响.现代食品科技, 2014,30(2):66-71, 16. Tan H G, Dong J, Wang G L, et al. Effect of neutral trehalase genes deletion on the freeze-tolerant characteristics of bread yeast. Modern Food Science and Technology, 2014,30(2):66-71, 16.
[7] 陈丽君, 肖冬光, 郭学武, 等. 面包酵母海藻糖含量与酵母耐性之间的关系. 食品工业科技, 2011, 32(8):112-114. Chen L J, Xiao D G, Guo X W, et al. Correlation between the trehalose content and the stress resistance of the baker yeasts. Science and Tecnology of Food Industry, 2011, 32(8):112-114.
[8] 程书梅, 王昌禄, 顾金兰, 等. 海藻糖对耐盐酵母的影响. 中国酿造, 2005, 24(8):8-11. Cheng S M, Wang C L, Gu J L, Chen MH, et al. Effect of trehalose on salt-tolerant yeast. China Brewing, 2005, 24(8):8-11.
[9] 吴苏生, 白亮, 郑祖亮, 等. 低温锻炼对酿酒酵母发酵特性的影响. 中国酿造, 2015, 34(5):56-59. Wu S S, Bai L, Zhen Z L, Zhang Z L, et al. Effects of low-temperature adaptation on fermentation characteristics of Saccharomyces cerevisia. China Brewing, 2015, 34(5):56-59.
[10] Wang P M, Zheng D Q, Chi X Q, et al. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Bioresource Technology, 2014, 152:371-376.
[11] Sasano Y, Haitani K, Hashida K, et al. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Journal of Bioscience and Bioengineering, 2012, 113(5):592-595.
[12] Li H, Wang H L, Du J, et al. Trehalose protects wine yeast against oxidation under thermal stress. World Journal of Microbiology and Biotechnology, 2010, 26(6):969-976.
[13] Yoshiyama Y, Tanaka K, Yoshiyama K,et al. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid. Journal of Bioscience and Bioengineering, 2015, 119(2):172-175.
[14] Tapia H, Young L, Fox D, et al. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proceedings of the National Academy of Science of the United States of America, 2015, 112(19):6122-6127.
[15] Glatz A, Pilbat A M, Németh G L, et al. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress and Chaperones, 2016, 21(2):327-338.
[16] Tan H G, Dong J, Wang G L, et al. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. J Ind Microbiol Biotechnol, 2014, 41(8):1275-1285.
[17] Pérez-Torrado R, Matallana E. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Biotechnology Progress, 2015, 31(1):20-24.
[18] Dong J, Chen D D, Wang G L, et al. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1. J Ind Microbiol Biotechnol, 2016, 43(6):817-828.
[19] 周利, 汤岳琴, 孙照勇, 等. 基于连续发酵驯化的高耐盐性酿酒酵母的育种. 应用与环境生物学报, 2014, 20(3):363-370. Zhou L, Tang Y Q, Sun Z Y, et al. Breeding of high salt-tolerant Saccharomyces cerevisiae strains based oncontinuous ethanol fermentation. Chin J Appl Environ Biol, 2014, 20(3):363-370.
[20] Qiao C Q, Jia S R, Dai Y J, et al. Trehalose biosynthesis enhancement for six yeast strains under pressurized culture. Applied Biochemistry and Biotechnology, 2010, 160(2):613-620.
[21] 赵玉巧, 仲美荣, 顾玲玲, 等. 海洋中海藻糖产生菌的筛选及发酵条件优化. 微生物学杂志, 2010, 30(3):50-54. Zhao Y Q, Zhong M R, Gu L L, et al. Screening and fermentation optim ization of trehalose-producing strain from marine. Jouranl of Microbiology, 2010, 30(3):50-54.
[22] Chi Z, Wang J M, Chi Z M, et al. Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification. Journal of Industrial Microbiology and Biotechnology,2010, 37(1):19-25.
[23] 朴春红, 刘仁杰, 王丹, 等. 酵母体内海藻糖定量方法研究. 食品科技, 2010, 35(6):284-286. Piao C H, Liu R J, Wang D, et al. Study of trehalose quantitative analysis of yeast extract. Food Science and Technology. 2010, 35(6):284-286.
[24] 谭海刚, 梅英杰, 关凤梅, 等. 蒽酮-硫酸法测定酵母中海藻糖的含量. 现代食品科技, 2006, 22(1):25-126, 128. Tan H G, Mei Y J, Guan F M, et al. Determination of trehalose content by anthrone-sulphuric acid colorimetric method. Modern Food Science and Technology, 2006,22(1):125-126, 128.
[25] Tao X M, Liu Y M, Wang Y H, et al. GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia. Analytical and Bioanalytical Chemistry, 2008, 391(8):2881-2889.
[26] Gu P F, Su T Y, Qi Q S. Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Applied Microbiology and Biotechnology, 2016, 100(5):2097-2105.
[27] Chen Y, Jens N. Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology,2016, 37:165-172.
[1] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[2] 廖丹妮,张昭旸,靳瑾,李霞,贾斌. 微生物tRNA与密码子系统应用研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 64-73.
[3] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[4] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[5] 封金云,宿玲恰,吴敬. 多酶复配合成海藻糖及其分离提取的研究 *[J]. 中国生物工程杂志, 2019, 39(7): 65-70.
[6] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[7] 薛二淑,吴昊,宋倩倩,田开仁,乔建军,财音青格乐. 细菌中D-氨基酸生物合成及调控作用研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 106-113.
[8] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[9] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[10] 赵爽, 刘柳, 吴林寰, 马俊才. 谷氨酸棒状杆菌技术研发态势分析[J]. 中国生物工程杂志, 2016, 36(9): 101-109.
[11] 李梦悦, 王腾飞, 汪俊卿, 赵一瑾, 程成, 王瑞明. 海藻糖合酶在毕赤酵母表面的展示[J]. 中国生物工程杂志, 2016, 36(2): 73-80.
[12] 万方, 陈民良, 张斌, 陈进聪, 陈雪岚. 代谢工程改造微生物高产氨基酸的策略[J]. 中国生物工程杂志, 2015, 35(3): 99-103.
[13] 黄翔峰, 王一涵, 刘佳楠, 刘佳, 陆丽君. 生物表面活性剂合成的促产因子研究进展[J]. 中国生物工程杂志, 2014, 34(7): 81-88.
[14] 赵峰, 张宜俊, 冉艳红, 王兴勇, 叶倩君, 李弘剑. rhIL-12二硫键、N-糖基化位点及C端氨基酸序列分析[J]. 中国生物工程杂志, 2014, 34(5): 39-53.
[15] 方华, 李灏. 海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用[J]. 中国生物工程杂志, 2014, 34(06): 84-89.