Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (9): 31-40    DOI: 10.13523/j.cb.20170905
研究报告     
海藻多糖通过下调肝癌细胞Hep3B糖酵解途径抑制细胞增殖和迁移
冯源1, 唐云2, 徐蕾3, 谭海刚4
1. 广东省高校功能蛋白质研究重点实验室暨南大学生命与健康工程研究院 广州 510632;
2. 天津科技大学食品与营养安全教育部实验室 天津 300222;
3. 上海交通大学生命科学技术学院 上海 200240;
4. 青岛农业大学食品科学与工程学院 青岛 266109
Algal Polysaccharides Inhibits Proliferation and Migration of Liver Cancer Cell Hep3B Via Down-regulation of EMP Pathway
FENG Yuan1, TANG Yun2, XU Lei3, TAN Hai-gang4
1. Key Laboratory of Functional Protein Research of Guangzhou Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China;
2. Key Laboratory of Food and Nutrition Safety of Ministry of Education, College of Food Science and Biotechnology, Tanjin University of Science and Technology, Tianjin 300222, China;
3. College of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China;
4. College of Food Science and Engineering, Qingdao Agricultural Unviersity, Qingdao 266109, China
 全文: PDF(1776 KB)   HTML
摘要: 目的:探讨海藻多糖(algal polysaccharides,AP)对肝癌细胞Hep3B的增殖和迁移的影响及其可能的作用机制,为治疗肝癌提供新的思路。方法:①比较正常细胞与癌细胞中糖酵解(embden-meyerhof-parnas,EMP)途径的表达差异,用紫外分光光度计比色法检测EMP限速酶酶活力:己糖激酶(hexokinase,HK)、丙酮酸激酶(pyruvate kinase,PK),用乳酸测定试剂盒测定EMP产物:乳酸。②AP处理Hep3B后,检测EMP表达水平变化。③AP处理细胞后,检测肝癌细胞Hep3B的增殖和迁移能力及对上皮细胞-间充质转化(EMT)的影响,方法包括MTT、qPCR和Transwell小室实验。④MTT、Transwell和qPCR检测HK抑制剂3-溴丙酮酸(3-bromopyruvate,3-BrPA)对肝癌Hep3B细胞的活力和迁移能力及EMT的影响。⑤Western blot和相关试剂盒检测AP与3-BrPA分别处理细胞时,对EMP水平及Akt通路的影响。⑥AP联合3-BrPA处理HepB3后,检测HK和Akt信号通路表达水平及细胞活力和迁移的变化。结果:①癌细胞(Hep3B、HeLa、SW480)EMP代谢水平均高于正常肝细胞(HL02),其中Hep3B差异最为显著。②AP能抑制Hep B细胞 EMP代谢水平,且抑制程度随着AP浓度升高而升高,存在浓度依赖性。③AP可抑制肝癌细胞Hep3B的增殖和迁移,且抑制EMT的发生。AP浓度为200mg/ml,处理时间为48h时,生长抑制率达(55±2.8)%,细胞迁移数为对照组的(32±2.9)%;④3-BrPA可下调Hep3B细胞HK活性,并抑制细胞活力与迁移,且抑制EMT的发生。200μmol/ L 3- BrPA作用细胞48h后,与对照组相比,细胞活性下降了(52±5.8)%(P<0.001),细胞迁移数下降了(48±6.1)%(P<0.01)。⑤AP和3-BrPA均下调EMP代谢水平,且抑制Akt信号通路。⑥AP与3-BrPA联合处理Hep3B后,HK表达下降,显著抑制Akt信号通路,细胞活性和迁移能力均较AP单用组显著下降(P<0.05)。结论:肝癌细胞Hep3B EMP代谢水平高于正常肝细胞,AP可下调 Hep3B细胞 EMP代谢水平,低EMP代谢水平可能通过下调EMT和Akt信号通路抑制Hep3B的增殖和迁移。当AP和3-BrPA联合应用时,抑制肝癌迁移和增殖效果更明显。
关键词: 细胞迁移EMP途径细胞增殖Hep3B细胞海藻多糖    
Abstract: Objective:To investigate the effort of algal polysaccharides(AP) on the ability of proliferation and migration in the liver cancer cell line Hep3B and potential mechanism which may provide a new idea for treatment of liver cancer.Methhods:①Four different cell lines were selected to compare the metabolic levels of embden-meyerhof-parnas(EMP) pathway in normal cells and cancer cells.②To detect the EMP metabolic levels changes in Hep3B with AP treatment.③MTT, qPCR and Transwell were used to measure the ability of cell proliferation,EMT marker and cell migration respectively in Hep3B cell with AP treatment.④Measured the ability of cell viability,proliferation and EMT Pathway with inhibitor:3-bromopyruvate(3-BrPA). ⑤Measured EMP levels and Akt signal pathway changes with AP or 3-BrPA treatment. ⑥Detected Akt signal pathway,cell viability and migration changes with AP and 3-BrPA treatment. Result:①The metabolic levels of EMP in cancer cells(Hep3B,HeLa,SW480)are higher than normal cell(HL02).Hep3B cell EMP metabolic level is the highest in three cancer cell lines. ②AP down regulated metabolic levels in Hep3B cell and it was concentration-dependent. ③AP inhibited the ability of proliferation and migration in Hep3B and down regulated the EMT progress. ④3-BrPA inhibited HK activity and down regulated the cell viability rate and migration ability compared with control group(P<0.01). ⑤AP and 3-BrPA both down regulated the EMP levels and inhibited Akt signal pathway. ⑥In AP + 3-BrPA group, HK activity was depressed obviously compared with AP group, and cell viability and wound healing rate were decreased seriously. Conclusion:The metabolic level of EMP pathway in Hep3B is much higher than normal cell. AP could down regulated Hep3B cell EMP metabolism level. Low metabolism levels of EMP could inhibit the proliferation and migration of Hep3B via down-regulation of EMT progress and Akt signaling pathway. When Hep3B was co-treated with AP and 3-BrPA,the cell ability and migration ability were depressed more obviously than only AP treatment. These data show AP therapy was effective on liver cancer cell Hep3B.
Key words: EMP Pathway    Cell proliferation    Algal polysaccharides    HepB3    Cell migration
收稿日期: 2017-04-06 出版日期: 2017-09-25
ZTFLH:  Q493.4  
作者简介: 冯源,fy75000@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐云
谭海刚
冯源
徐蕾

引用本文:

冯源, 唐云, 徐蕾, 谭海刚. 海藻多糖通过下调肝癌细胞Hep3B糖酵解途径抑制细胞增殖和迁移[J]. 中国生物工程杂志, 2017, 37(9): 31-40.

FENG Yuan, TANG Yun, XU Lei, TAN Hai-gang. Algal Polysaccharides Inhibits Proliferation and Migration of Liver Cancer Cell Hep3B Via Down-regulation of EMP Pathway. China Biotechnology, 2017, 37(9): 31-40.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170905        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I9/31

[1] Wijesekara I, Pangestuti R, Kim S K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 2011, 84(1):14-21.
[2] Lee J C, Hou M F, Huang H W, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell International, 2013, 13(1):55.
[3] Kim J, Dang C V. Cancer's molecular sweet tooth and the Warburg effect. Cancer Research, 2006, 66(18):8927-8930.
[4] Porporato P E, Dhup S, Dadhich R K, et al. Anticancer targets in the glycolytic metabolism of tumors:a comprehensive review. Frontiers in Pharmacology, 2011, 7(2):2.
[5] Altenberg B, Greulich K O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics, 2004, 84(6):1014-1020.
[6] Gatenby R A, Gillies R J. Glycolysis in cancer:a potential target for therapy. The International Journal of Biochemistry & Cell Biology, 2007, 39(7):1358-1366.
[7] Heimbach J, Kulik L M, Finn R, et al. Aasld guidelines for the treatment of hepatocellular carcinoma. Hepatology, 2017,209(78):124-128.
[8] Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology, 2016, 150(4):835-853.
[9] Noy R, Pollard J W. Tumor-associated macrophages:from mechanisms to therapy. Immunity, 2014, 41(1):49-61.
[10] Nilsson H, Lindgren D, Forsberg A M, et al. Primary clear cell renal carcinoma cells display minimal mitochondrial respiratory capacity resulting in pronounced sensitivity to glycolytic inhibition by 3-Bromopyruvate. Cell Death & Disease, 2015, 6(1):e1585.
[11] Xintaropoulou C, Ward C, Wise A, et al. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget, 2015, 6(28):25677.
[12] Ganapathy-Kanniappan S, Geschwind J F H. Tumor glycolysis as a target for cancer therapy:progress and prospects. Molecular Cancer, 2013, 12(1):152.
[13] Costa L S, Fidelis G P, Cordeiro S L, et al. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 2010, 64(1):21-28.
[14] Zong A, Cao H, Wang F. Anticancer polysaccharides from natural resources:A review of recent research. Carbohydrate Polymers, 2012, 90(4):1395-1410.
[15] Shoshan M C. 3-Bromopyruvate:targets and outcomes. Journal of Bioenergetics and Biomembranes, 2012, 44(1):7-15.
[16] Zheng J. Energy metabolism of cancer:Glycolysis versus oxidative phosphorylation (review). Oncology Letters, 2012, 4(6):1151-1157.
[17] Liu Z, Zhang Y Y, Zhang Q W, et al. 3-Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway. Anti-cancer Drugs, 2014, 25(4):447-455.
[18] Ha G H, Park J S, Breuer E K Y. TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Letters, 2013, 332(1):63-73.
[1] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[2] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[3] 苟理尧,刘梦瑶,夏菁,万群,孙恃雷,唐敏,张彦. 骨形成蛋白9对人膀胱癌BIU-87细胞增殖和迁移的影响[J]. 中国生物工程杂志, 2018, 38(5): 10-16.
[4] 李依蔓,周钦. Herpud1对后肾间充质细胞的作用及其机制的探讨*[J]. 中国生物工程杂志, 2018, 38(3): 9-15.
[5] 梁姗, 蒋子川, 冯均. 胭脂萝卜花青素提取及对NCI-N87细胞增殖侵袭的影响[J]. 中国生物工程杂志, 2017, 37(11): 101-108.
[6] 汤志雄, 苟德明. miRNA调控成肌分化的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 103-110.
[7] 秦海霞, 崔红凯, 潘莹, 户瑞丽, 朱利红, 王世进. miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响[J]. 中国生物工程杂志, 2016, 36(6): 24-31.
[8] 刘雪杰, 林巍然, 唐立春, 孙薇, 魏汉东, 姜颖. 慢病毒载体介导RAB27A基因过表达对人HepG2肝癌细胞增殖的影响[J]. 中国生物工程杂志, 2014, 34(9): 16-23.
[9] 陈丽, 曹莹. PKA对斑马鱼前肾发育的影响及其机制研究[J]. 中国生物工程杂志, 2014, 34(10): 41-48.
[10] 季辉, 王琦, 仲蕾, 魏文祥. URI基因稳定表达对肝癌SMMC-7721细胞增殖能力的影响[J]. 中国生物工程杂志, 2013, 33(6): 1-6.
[11] 吴琛, 田焕娜, 王媛媛, 刘芳铭, 张晓康, 李秦剑, 谢园园. GALNT14对人乳腺癌MCF-7细胞迁移的影响[J]. 中国生物工程杂志, 2012, 32(07): 8-15.
[12] 李晓娜, 宋关斌, 罗庆. 机械拉伸对骨髓间充质干细胞迁移行为的影响[J]. 中国生物工程杂志, 2012, 32(05): 1-6.
[13] 霍润兰, 罗彦凤, 李岩, 严维维, 邢娟, 林福春, 王远亮. 材料表面化学刺激对纤连蛋白构象及细胞的影响[J]. 中国生物工程杂志, 2011, 31(7): 32-37.
[14] 秦晓林, 徐勇, 范晓卿, 李武县, 匡文斌, 成凤, 涂植光. TFPI-2对人肝癌细胞生长增殖、凋亡及AFP合成的影响[J]. 中国生物工程杂志, 2011, 31(12): 33-38.
[15] 邵会媛, 苗宗玉, 覃凤娴, 陈先春, 谭诗, 钟梁, 张伶. NPM1突变基因表达抑制K562白血病细胞体外增殖和侵袭[J]. 中国生物工程杂志, 2010, 30(11): 6-10.