Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (9): 1-6    DOI: 10.13523/j.cb.20170901
研究报告     
人类Grx3蛋白与转录因子p65相互作用的研究
胡可越1, 程宁辉2, 王新泉1
清华大学生命科学学院 北京 100084
The Interaction Study Between Human Grx3 Protein and Transcription Factor p65
HU Ke-yue1, CHENG Ning-hui2, WANG Xin-quan1
School of Life Sciences, Tsinghua University, Beijing 100084, China
 全文: PDF(1138 KB)   HTML
摘要: 巯基氧化还原酶在生物体的系统内担当着非常重要的角色,其主要介导的是巯基和二硫键之间的相互转化的反应。人类Grx3蛋白作为一种巯基氧化还原酶在谷氧还蛋白系统中有着非常重要的作用。已有的研究表明,Grx3蛋白对NF-κB信号通路的活性有十分显著的影响。p65(RELA)是人类机体内十分重要的一种蛋白质,其在NF-κB信号通路有着重要的调控作用,几乎调控着NF-κB信号通路中的所有下游反应。通过大肠杆菌提纯表达的p65与Grx3在体外条件下进行偶联实验,为p65与Grx3存在相互作用提供了强有力的证据,同时也为Grx3蛋白对NF-κB信号通路的影响机制提供了一个可能的解释。
关键词: 人类p65(RELA)蛋白蛋白质偶联人类谷氧还蛋白Grx3    
Abstract: Oxidation-reduction system exists in almost all organisms,and thiol-redox enzymes play a very important part in the oxidation-reduction system. Thiol-redox enzymes regulate the conversion between thiol group and disulfide bond. Thiol-redox enzymes exist in both glutaredoxins system and thioredoxins system in human body. Our target protein Grx3 is one of the most important role in glutaredoxins system. p65(RELA) a very important protein in human body which has a very close relation with inflammatory reaction regulates the NF-κB signal pathway,it almost control all of the cascade reaction of NF-κB signal pathway,while other studies has shown that Grx3 has a significant influence on NF-κB signal pathway. There is a connection between p65 and Grx3 in vivo environment by colocalisationexperiment and p65 and Grx3 protein purify from E.coli can crosslink in a specific in vitro environment which provide a significant proof of interaction between Grx3 and p65 in vitro environment and explains how Grx3 get involved in the NF-κB signal pathway as while.
Key words: Human p65    Human Grx3    Protein crosslinking
收稿日期: 2017-03-03 出版日期: 2017-09-25
ZTFLH:  Q819  
通讯作者: 王新泉     E-mail: xinquanwang@tsinghua.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡可越
程宁辉
王新泉

引用本文:

胡可越, 程宁辉, 王新泉. 人类Grx3蛋白与转录因子p65相互作用的研究[J]. 中国生物工程杂志, 2017, 37(9): 1-6.

HU Ke-yue, CHENG Ning-hui, WANG Xin-quan. The Interaction Study Between Human Grx3 Protein and Transcription Factor p65. China Biotechnology, 2017, 37(9): 1-6.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170901        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I9/1

[1] Haunhorst P, Berndt C, Eitner S, et al. Characterization of the human monothiol glutaredoxin 3(PICOT) as iron-sulfur protein. Biochemical & Biophysical Research Communications, 2010, 394(2):372-376.
[2] Martin J L. Thioredoxin——a fold for all reasons. Structure, 1995, 3(3):245-250.
[3] Fernandes A P, Holmgren A. Glutaredoxins:glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxidants & Redox Signaling, 2004, 6(6):63-74.
[4] Witte S, Villalba M, Bi K, et al. Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain. Journal of Biological Chemistry, 2000, 275(3):1902-1909.
[5] Häberlein I, Würfel M, Follmann H. Non-redox protein interactions in the thioredoxin activation of chloroplast enzymes. BiochimicaEtBiophysicaActa, 1992, 1121(3):293-296.
[6] Bandyopadhyay S, Gama F, Molina-Navarro M M, et al. Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of clusters. Embo Journal, 2008, 27(7):1122-1133.
[7] Li H, Mapolelo D T, Dingra N N, et al. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a cluster with cysteinyl and histidyl ligation. Biochemistry, 2009, 48(40):9569-9581.
[8] 郭云萍,孙璐,张立剑,等.无标签重组人硫氧还蛋白的大规模表达、纯化及活性检测.中国生物工程杂志,2012,32(8):62-67. Guo Y P, Sun L, Zhang L J, et al.Expression, purification and characterization of non-taged recombinant human thioredoxin.China Biotechnology, 2012,32(8):62-67.
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.